001     861558
005     20210130000849.0
024 7 _ |a 10.1063/1.5038258
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 1527-2400
|2 ISSN
024 7 _ |a 2128/21887
|2 Handle
024 7 _ |a pmid:30501331
|2 pmid
024 7 _ |a WOS:000451735700054
|2 WOS
024 7 _ |a altmetric:39316310
|2 altmetric
037 _ _ |a FZJ-2019-02009
082 _ _ |a 620
100 1 _ |a Hollmann, Arne
|0 P:(DE-HGF)0
|b 0
245 _ _ |a 30 GHz-voltage controlled oscillator operating at 4 K
260 _ _ |a [S.l.]
|c 2018
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553235868_17236
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state qubit manipulation and read-out fidelities are reaching fault-tolerance, but quantum error correction requires millions of physical qubits and therefore a scalable quantum computer architecture. To solve signal-line bandwidth and fan-out problems, microwave sources required for qubit manipulation might be embedded close to the qubit chip, typically operating at temperatures below 4 K. Here, we perform the first low temperature measurements of a 130 nm BiCMOS based SiGe voltage controlled oscillator at cryogenic temperature. We determined the frequency and output power dependence on temperature and magnetic field up to 5 T and measured the temperature influence on its noise performance. The device maintains its full functionality from 300 K to 4 K. The carrier frequency at 4 K increases by 3% with respect to the carrier frequency at 300 K, and the output power at 4 K increases by 10 dB relative to the output power at 300 K. The frequency tuning range of approximately 20% remains unchanged between 300 K and 4 K. In an in-plane magnetic field of 5 T, the carrier frequency shifts by only 0.02% compared to the frequency at zero magnetic field.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jirovec, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kucharski, Maciej
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kissinger, Dietmar
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fischer, Gunter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schreiber, Lars
|0 P:(DE-Juel1)172641
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1063/1.5038258
|g Vol. 89, no. 11, p. 114701 -
|0 PERI:(DE-600)1472905-2
|n 11
|p 114701 -
|t Review of scientific instruments
|v 89
|y 2018
|x 1089-7623
856 4 _ |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13.
|u https://juser.fz-juelich.de/record/861558/files/1.5038258.pdf
856 4 _ |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13.
|u https://juser.fz-juelich.de/record/861558/files/1804.09522.pdf
856 4 _ |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13.
|x pdfa
|u https://juser.fz-juelich.de/record/861558/files/1.5038258.pdf?subformat=pdfa
856 4 _ |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13.
|x pdfa
|u https://juser.fz-juelich.de/record/861558/files/1804.09522.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861558
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172641
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21