000861571 001__ 861571
000861571 005__ 20210130000854.0
000861571 0247_ $$2doi$$a10.1002/mrm.27387
000861571 0247_ $$2ISSN$$a0740-3194
000861571 0247_ $$2ISSN$$a1522-2594
000861571 0247_ $$2pmid$$apmid:30058202
000861571 0247_ $$2WOS$$aWOS:000454009000023
000861571 037__ $$aFZJ-2019-02022
000861571 082__ $$a610
000861571 1001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland A.$$b0$$eCorresponding author
000861571 245__ $$aRelaxometry and quantification in simultaneously acquired single and triple quantum filtered sodium MRI
000861571 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2019
000861571 3367_ $$2DRIVER$$aarticle
000861571 3367_ $$2DataCite$$aOutput Types/Journal article
000861571 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553865733_28546
000861571 3367_ $$2BibTeX$$aARTICLE
000861571 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861571 3367_ $$00$$2EndNote$$aJournal Article
000861571 520__ $$aPurposeSodium imaging delivers valuable information about in vivo metabolism and pathophysiology. Image quantification can benefit the diagnosis and characterization of existing pathologies and the clinical course of a disease. An enhanced SISTINA sequence is proposed for sodium imaging and for the estimation of sodium tissue parameters for a 2‐compartment model of the brain, such as relaxation times in intracellular space and tissue, intracellular volume fraction, and intracellular molar fraction. The aim of the research is to demonstrate how a 2‐compartment model can be parameterized to sufficiently describe tissue sodium concentrations and dynamics by performing relaxometry with such a sequence.MethodsMultiple quantum filtered sodium signals were detected using an enhanced SISTINA sequence (consisting of 3 consecutive RF pulses) by placing a readout train between the first and second RF pulse, and 1 after the third pulse. Semiautomatic segmentation using singular value decomposition and manual segmentation was applied to the images.ResultsAnalysis was performed on 40 healthy volunteers in a 4T scanner, yielding bi‐exponential relaxation times of brain tissue, intracellular sodium molar and volume fraction, intracellular sodium concentration, as well as sodium tissue concentration in the scope of a considered model. Two models with either purely mono‐exponential or bi‐exponential relaxing extracellular sodium were used with and without a potential contribution of triple quantum‐filtered signal from extracellular space.ConclusionAn estimation of relaxation properties and concentrations limited to the assumed model is possible from a single sequence. The achieved results agree well with those reported in literature.
000861571 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000861571 588__ $$aDataset connected to CrossRef
000861571 7001_ $$0P:(DE-Juel1)167471$$aShymanskaya, Aliaksandra$$b1$$ufzj
000861571 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$ufzj
000861571 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27387$$gVol. 81, no. 1, p. 303 - 315$$n1$$p303 - 315$$tMagnetic resonance in medicine$$v81$$x0740-3194$$y2019
000861571 8564_ $$uhttps://juser.fz-juelich.de/record/861571/files/Worthoff_et_al-2019-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000861571 8564_ $$uhttps://juser.fz-juelich.de/record/861571/files/Worthoff_et_al-2019-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861571 909CO $$ooai:juser.fz-juelich.de:861571$$pVDB
000861571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b0$$kFZJ
000861571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167471$$aForschungszentrum Jülich$$b1$$kFZJ
000861571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000861571 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000861571 9141_ $$y2019
000861571 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861571 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000861571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861571 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861571 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861571 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000861571 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000861571 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861571 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861571 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000861571 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000861571 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000861571 980__ $$ajournal
000861571 980__ $$aVDB
000861571 980__ $$aI:(DE-Juel1)INM-11-20170113
000861571 980__ $$aI:(DE-Juel1)INM-4-20090406
000861571 980__ $$aI:(DE-82)080010_20140620
000861571 980__ $$aUNRESTRICTED