Journal Article FZJ-2019-02108

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Stepwise Growth of Ruthenium Terpyridine Complexes on Au Surfaces

 ;  ;  ;  ;  ;  ;  ;

2019
Soc.66306 Washington, DC

The journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces 123(11), 6537 - 6548 () [10.1021/acs.jpcc.8b12039]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Self-assembled monolayers (SAMs) of ruthenium-based molecular wires on solid surfaces are of great interest for optoelectronic and nanoelectronic applications. Here, we present a novel reactive Ru precursor, which enabled us to grow SAMs of Ru complex wires on Au surfaces even at room temperature. Thus, the Ru complex wire growth can be performed easily by sequential reaction of the reactive Ru precursor with terpyridine ligands without the harsh reaction conditions needed otherwise. Subsequently, we monitored the stepwise growth using infrared reflection absorption spectroscopy (IRRAS) and surface-enhanced Raman spectroscopy (SERS). A comparison of IRRAS and SERS data with theoretical spectra, derived from density functional theory calculations, enabled us to verify the formation of each individual growth step. Furthermore, we used these data to determine the orientation of the Ru-based molecular wires with respect to the Au surface. Growth step-dependent layer thicknesses obtained from variable angle spectroscopic ellipsometry verify the spectroscopic results. Thus, we provide a room-temperature method to realize Ru complex wire growth based on a reactive Ru precursor.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 524 - Controlling Collective States (POF3-524) (POF3-524)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2019-03-26, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)