000862050 001__ 862050
000862050 005__ 20240712100916.0
000862050 0247_ $$2doi$$a10.5194/acp-19-543-2019
000862050 0247_ $$2ISSN$$a1680-7316
000862050 0247_ $$2ISSN$$a1680-7324
000862050 0247_ $$2Handle$$a2128/22051
000862050 0247_ $$2WOS$$aWOS:000455915800001
000862050 0247_ $$2altmetric$$aaltmetric:53915148
000862050 037__ $$aFZJ-2019-02416
000862050 082__ $$a550
000862050 1001_ $$0P:(DE-Juel1)159462$$aTritscher, Ines$$b0$$eCorresponding author
000862050 245__ $$aLagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere
000862050 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000862050 3367_ $$2DRIVER$$aarticle
000862050 3367_ $$2DataCite$$aOutput Types/Journal article
000862050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605868744_2609
000862050 3367_ $$2BibTeX$$aARTICLE
000862050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862050 3367_ $$00$$2EndNote$$aJournal Article
000862050 520__ $$aPolar stratospheric clouds (PSCs) and cold stratospheric aerosols drive heterogeneous chemistry and play a major role in polar ozone depletion. The Chemical Lagrangian Model of the Stratosphere (CLaMS) simulates the nucleation, growth, sedimentation, and evaporation of PSC particles along individual trajectories. Particles consisting of nitric acid trihydrate (NAT), which contain a substantial fraction of the stratospheric nitric acid (HNO3), were the focus of previous modeling work and are known for their potential to denitrify the polar stratosphere. Here, we carried this idea forward and introduced the formation of ice PSCs and related dehydration into the sedimentation module of CLaMS. Both processes change the simulated chemical composition of the lower stratosphere. Due to the Lagrangian transport scheme, NAT and ice particles move freely in three-dimensional space. Heterogeneous NAT and ice nucleation on foreign nuclei as well as homogeneous ice nucleation and NAT nucleation on preexisting ice particles are now implemented into CLaMS and cover major PSC formation pathways.We show results from the Arctic winter 2009/2010 and from the Antarctic winter 2011 to demonstrate the performance of the model over two entire PSC seasons. For both hemispheres, we present CLaMS results in comparison to measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), and the Microwave Limb Sounder (MLS). Observations and simulations are presented on season-long and vortex-wide scales as well as for single PSC events. The simulations reproduce well both the timing and the extent of PSC occurrence inside the entire vortex. Divided into specific PSC classes, CLaMS results show predominantly good agreement with CALIOP and MIPAS observations, even for specific days and single satellite orbits. CLaMS and CALIOP agree that NAT mixtures are the first type of PSC to be present in both winters. NAT PSC areal coverages over the entire season agree satisfactorily. However, cloud-free areas, next to or surrounded by PSCs in the CALIOP data, are often populated with NAT particles in the CLaMS simulations. Looking at the temporal and vortex-averaged evolution of HNO3, CLaMS shows an uptake of HNO3 from the gas into the particle phase which is too large and happens too early in the simulation of the Arctic winter. In turn, the permanent redistribution of HNO3 is smaller in the simulations than in the observations. The Antarctic model run shows too little denitrification at lower altitudes towards the end of the winter compared to the observations. The occurrence of synoptic-scale ice PSCs agrees satisfactorily between observations and simulations for both hemispheres and the simulated vertical redistribution of water vapor (H2O) is in very good agreement with MLS observations. In summary, a conclusive agreement between CLaMS simulations and a variety of independent measurements is presented.
000862050 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000862050 536__ $$0G:(DE-Juel1)jicg11_20090701$$aChemisches Lagrangesches Modell der Stratosphäre (CLaMS) (jicg11_20090701)$$cjicg11_20090701$$fChemisches Lagrangesches Modell der Stratosphäre (CLaMS)$$x1
000862050 588__ $$aDataset connected to CrossRef
000862050 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b1
000862050 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b2
000862050 7001_ $$0P:(DE-HGF)0$$aPitts, Michael C.$$b3
000862050 7001_ $$0P:(DE-HGF)0$$aPoole, Lamont R.$$b4
000862050 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b5
000862050 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b6
000862050 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-543-2019$$gVol. 19, no. 1, p. 543 - 563$$n1$$p543 - 563$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000862050 8564_ $$uhttps://juser.fz-juelich.de/record/862050/files/invoice_Helmholtz-PUC-2019-15.pdf
000862050 8564_ $$uhttps://juser.fz-juelich.de/record/862050/files/acp-19-543-2019.pdf$$yOpenAccess
000862050 8564_ $$uhttps://juser.fz-juelich.de/record/862050/files/invoice_Helmholtz-PUC-2019-15.pdf?subformat=pdfa$$xpdfa
000862050 8564_ $$uhttps://juser.fz-juelich.de/record/862050/files/acp-19-543-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862050 8767_ $$8Helmholtz-PUC-2019-15$$92019-04-01$$d2019-04-03$$eAPC$$jZahlung erfolgt$$pacp-2018-337
000862050 909CO $$ooai:juser.fz-juelich.de:862050$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich$$b0$$kFZJ
000862050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b1$$kFZJ
000862050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b2$$kFZJ
000862050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b5$$kFZJ
000862050 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b6$$kFZJ
000862050 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000862050 9141_ $$y2019
000862050 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862050 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862050 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862050 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000862050 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862050 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862050 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862050 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862050 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862050 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862050 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862050 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000862050 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862050 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862050 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862050 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000862050 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000862050 9801_ $$aAPC
000862050 9801_ $$aFullTexts
000862050 980__ $$ajournal
000862050 980__ $$aVDB
000862050 980__ $$aI:(DE-Juel1)IEK-7-20101013
000862050 980__ $$aI:(DE-82)080012_20140620
000862050 980__ $$aAPC
000862050 980__ $$aUNRESTRICTED
000862050 981__ $$aI:(DE-Juel1)ICE-4-20101013