001     862051
005     20240712100916.0
024 7 _ |a 10.5194/acp-19-425-2019
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/22099
|2 Handle
024 7 _ |a WOS:000455810000001
|2 WOS
024 7 _ |a altmetric:53793748
|2 altmetric
037 _ _ |a FZJ-2019-02417
082 _ _ |a 550
100 1 _ |a Diallo, Mohamadou
|0 P:(DE-Juel1)169614
|b 0
|e Corresponding author
245 _ _ |a Structural changes in the shallow and transition branch of the Brewer–Dobson circulation induced by El Niño
260 _ _ |a Katlenburg-Lindau
|c 2019
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556027976_23189
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The stratospheric Brewer–Dobson circulation (BDC) determines the transport and atmospheric lifetime of key radiatively active trace gases and further impacts surface climate through downward coupling. Here, we quantify the variability in the lower stratospheric BDC induced by the El Niño–Southern Oscillation (ENSO), using satellite trace gas measurements and simulations with the Lagrangian chemistry transport model, CLaMS, driven by ERA-Interim and JRA-55 reanalyses. We show that despite discrepancies in the deseasonalized ozone (O3) mixing ratios between CLaMS simulations and satellite observations, the patterns of changes in the lower stratospheric O3 anomalies induced by ENSO agree remarkably well over the 2005–2016 period. Particularly during the most recent El Niño in 2015–2016, both satellite observations and CLaMS simulations show the largest negative tropical O3 anomaly in the record. Regression analysis of different metrics of the BDC strength, including mean age of air, vertical velocity, residual circulation, and age spectrum, shows clear evidence of structural changes in the BDC in the lower stratosphere induced by El Niño, consistent with observed O3 anomalies. These structural changes during El Niño include a weakening of the transition branch of the BDC between about 370 and 420 K (∼100–70 hPa) and equatorward of about 60∘ and a strengthening of the shallow branch at the same latitudes and between about 420 and 500 K (∼70–30 hPa). The slowdown of the transition branch is due to an upward shift in the dissipation height of the large-scale and gravity waves, while the strengthening of the shallow branch results mainly from enhanced gravity wave breaking in the tropics–subtropics combined with enhanced planetary wave breaking at high latitudes. The strengthening of the shallow branch induces negative tropical O3 anomalies due to enhanced tropical upwelling, while the weakening of the transition branch combined with enhanced downwelling due to the strengthening shallow branch leads to positive O3 anomalies in the extratropical upper troposphere–lower stratosphere (UTLS). Our results suggest that a shift in the ENSO basic state toward more frequent El Niño-like conditions in a warmer future climate will substantially alter UTLS trace gas distributions due to these changes in the vertical structure of the stratospheric circulation.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 1
|u fzj
700 1 _ |a Santee, Michelle L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 3
700 1 _ |a Tao, Mengchu
|0 P:(DE-Juel1)156119
|b 4
|u fzj
700 1 _ |a Walker, Kaley A.
|0 0000-0003-3420-9454
|b 5
700 1 _ |a Legras, Bernard
|0 0000-0002-3756-7794
|b 6
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 7
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 8
700 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 9
|u fzj
773 _ _ |a 10.5194/acp-19-425-2019
|g Vol. 19, no. 1, p. 425 - 446
|0 PERI:(DE-600)2069847-1
|n 1
|p 425 - 446
|t Atmospheric chemistry and physics
|v 19
|y 2019
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/862051/files/invoice_Helmholtz-PUC-2019-15.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862051/files/acp-19-425-2019.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862051/files/invoice_Helmholtz-PUC-2019-15.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862051/files/acp-19-425-2019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862051
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129138
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156119
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129141
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21