TY - JOUR AU - Kireev, Dmitry AU - Rincon-Montes, V. AU - Stevanovic, Jelena AU - Srikantharajah, Kagithiri AU - Offenhäusser, Andreas TI - N3-MEA probes: Scooping Neuronal Networks JO - Frontiers in neuroscience VL - 13 SN - 1662-453X CY - Lausanne PB - Frontiers Research Foundation M1 - FZJ-2019-02453 SP - 320 PY - 2019 AB - In the current work, we introduce a brand new line of versatile, flexible, and multifunctional MEA probes, the so-called Nano Neuro Net, or N3-MEAs. Material choice, dimensions, and room for further upgrade, were carefully considered when designing such probes in order to cover the widest application range possible. Proof of the operation principle of these novel probes is shown in the manuscript via the recording of extracellular signals, such as action potentials and local field potentials from cardiac cells and retinal ganglion cells of the heart tissue and eye respectively. Reasonably large signal to noise ratio (SNR) combined with effortless operation of the devices, mechanical and chemical stability, multifunctionality provide, in our opinion, an unprecedented blend. We show successful recordings of (1) action potentials from heart tissue with a SNR up to 13.2; (2) spontaneous activity of retinal ganglion cells with a SNR up to 12.8; and (3) local field potentials with an ERG-like waveform, as well as spiking responses of the retina to light stimulation. The results reveal not only the multi-functionality of these N3-MEAs, but high quality recordings of electrogenic tissues. LB - PUB:(DE-HGF)16 C6 - pmid:31024239 UR - <Go to ISI:>//WOS:000464445500001 DO - DOI:10.3389/fnins.2019.00320 UR - https://juser.fz-juelich.de/record/862097 ER -