000862133 001__ 862133 000862133 005__ 20220930130209.0 000862133 0247_ $$2doi$$a10.3389/fncel.2019.00125 000862133 0247_ $$2Handle$$a2128/22186 000862133 0247_ $$2WOS$$aWOS:000467474200001 000862133 0247_ $$2altmetric$$aaltmetric:59880476 000862133 037__ $$aFZJ-2019-02487 000862133 082__ $$a610 000862133 1001_ $$0P:(DE-Juel1)165956$$aGuzman, Gustavo$$b0 000862133 245__ $$aA tripartite interaction among the calcium channel α1- and β-subunits and F-actin increases the readily releasable pool of vesicles and its recovery after depletion 000862133 260__ $$aLausanne$$bFrontiers Research Foundation$$c2019 000862133 3367_ $$2DRIVER$$aarticle 000862133 3367_ $$2DataCite$$aOutput Types/Journal article 000862133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557993769_1843 000862133 3367_ $$2BibTeX$$aARTICLE 000862133 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862133 3367_ $$00$$2EndNote$$aJournal Article 000862133 520__ $$aNeurotransmitter release is initiated by the influx of Ca2+ via voltage-gated calcium channels. The accessory β-subunit (CaVβ) of these channels shapes synaptic transmission by associating with the pore-forming subunit (CaVα1) and up-regulating presynaptic calcium currents. Besides CaVα1, CaVβ interacts with several partners including actin filaments (F-actin). These filaments are known to associate with synaptic vesicles at the presynaptic terminals and support their translocation within different pools, but the role of CaVβ/F-actin association on synaptic transmission has not yet been explored. We here study how CaVβ4, the major calcium channel β isoform in mamalian brain, modifies synaptic transmission in concert with F-actin in cultured hippocampal neurons. We analysed the effect of exogenous CaVβ4 before and after pharmacological disruption of the actin cytoskeleton and dissected calcium channel-dependent and -independent functions by comparing the effects of the wild-type subunit with the one bearing a double mutation that impairs binding to CaVα1. We found that exogenously expressed wild-type CaVβ4 enhances spontaneous and depolarization-evoked excitatory postsynaptic currents without altering synaptogenesis. CaVβ4 increases the size of the readily releasable pool (RRP) of synaptic vesicles at resting conditions and accelerates their recovery after depletion. The enhanced neurotransmitter release induced by CaVβ4 is abolished upon disruption of the actin cytoskeleton. The CaVα1 association-deficient CaVβ4 mutant associates with actin filaments, but neither alters postsynaptic responses nor the time course of the RRP recovery. Furthermore, this mutant protein preserves the ability to increase the RRP size. These results indicate that the interplay between CaVβ4 and F-actin also support recruitment of synaptic vesicles to the RRP in a CaVα1-independent manner. Our studies show an emerging role of CaVβ in determining synaptic vesicle maturation toward the priming state and its replenishment after release. We envision that this subunit plays a role in coupling exocytosis to endocytosis during the vesicle cycle. 000862133 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0 000862133 7001_ $$0P:(DE-Juel1)156375$$aGuzman, Raul$$b1 000862133 7001_ $$0P:(DE-Juel1)131932$$aJordan, Nadine$$b2 000862133 7001_ $$0P:(DE-Juel1)151357$$aHidalgo, Patricia$$b3$$eCorresponding author 000862133 773__ $$0PERI:(DE-600)2452963-1$$a10.3389/fncel.2019.00125$$p125$$tFrontiers in cellular neuroscience$$v13$$x1662-5102$$y2019 000862133 8564_ $$uhttps://juser.fz-juelich.de/record/862133/files/2018-0158468-6.pdf 000862133 8564_ $$uhttps://juser.fz-juelich.de/record/862133/files/2018-0158468-6.pdf?subformat=pdfa$$xpdfa 000862133 8564_ $$uhttps://juser.fz-juelich.de/record/862133/files/fncel-13-00125.pdf$$yOpenAccess 000862133 8564_ $$uhttps://juser.fz-juelich.de/record/862133/files/fncel-13-00125.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000862133 8767_ $$82018-0158468-6$$92019-03-13$$d2019-04-08$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507.50 USD 000862133 909CO $$ooai:juser.fz-juelich.de:862133$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000862133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165956$$aForschungszentrum Jülich$$b0$$kFZJ 000862133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156375$$aForschungszentrum Jülich$$b1$$kFZJ 000862133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131932$$aForschungszentrum Jülich$$b2$$kFZJ 000862133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151357$$aForschungszentrum Jülich$$b3$$kFZJ 000862133 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000862133 9141_ $$y2019 000862133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862133 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000862133 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000862133 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000862133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL NEUROSCI : 2017 000862133 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000862133 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000862133 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862133 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000862133 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000862133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review 000862133 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000862133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000862133 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000862133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862133 920__ $$lyes 000862133 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0 000862133 9801_ $$aAPC 000862133 9801_ $$aFullTexts 000862133 980__ $$ajournal 000862133 980__ $$aVDB 000862133 980__ $$aUNRESTRICTED 000862133 980__ $$aI:(DE-Juel1)ICS-4-20110106 000862133 980__ $$aAPC 000862133 981__ $$aI:(DE-Juel1)IBI-1-20200312