000862421 001__ 862421
000862421 005__ 20240708133319.0
000862421 0247_ $$2doi$$a10.1016/j.fusengdes.2019.04.031
000862421 0247_ $$2ISSN$$a0920-3796
000862421 0247_ $$2ISSN$$a1873-7196
000862421 0247_ $$2altmetric$$aaltmetric:60215500
000862421 0247_ $$2WOS$$aWOS:000488313700241
000862421 037__ $$aFZJ-2019-02743
000862421 082__ $$a530
000862421 1001_ $$0P:(DE-Juel1)4596$$aMertens, Philippe$$b0$$eCorresponding author
000862421 245__ $$aOn the use of rhodium mirrors for optical diagnostics in ITER
000862421 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000862421 3367_ $$2DRIVER$$aarticle
000862421 3367_ $$2DataCite$$aOutput Types/Journal article
000862421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569389474_10568
000862421 3367_ $$2BibTeX$$aARTICLE
000862421 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862421 3367_ $$00$$2EndNote$$aJournal Article
000862421 520__ $$aThe first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of $10^{20} m^{−2}s^{−1}$. At the position of the mirror, the flux may still reach about $10^{18} m^{−2}s^{−1}$. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium ($^{103}Rh$) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance ($\mathscr{R}_{Rh}≈75\%$) which is much higher than of some other options. $\mathscr{R}_{Rh}$is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events.The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering.
000862421 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000862421 588__ $$aDataset connected to CrossRef
000862421 7001_ $$0P:(DE-HGF)0$$aBoman, Romain$$b1
000862421 7001_ $$0P:(DE-Juel1)165722$$aDickheuer, Sven$$b2
000862421 7001_ $$0P:(DE-Juel1)130068$$aKrasikov, Yury$$b3
000862421 7001_ $$0P:(DE-Juel1)130071$$aKrimmer, Andreas$$b4
000862421 7001_ $$0P:(DE-HGF)0$$aLeichtle, Dieter$$b5
000862421 7001_ $$0P:(DE-HGF)0$$aLiegeois, Kim$$b6
000862421 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b7
000862421 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, Andrey$$b8
000862421 7001_ $$0P:(DE-HGF)0$$aMarchuk, Oleksander$$b9
000862421 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b10
000862421 7001_ $$0P:(DE-HGF)0$$aDe Bock, Maarten$$b11
000862421 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2019.04.031$$gp. S0920379619305654$$nB$$p2514-2518$$tFusion engineering and design$$v146$$x0920-3796$$y2019
000862421 8564_ $$uhttps://juser.fz-juelich.de/record/862421/files/W1503625.pdf
000862421 8564_ $$uhttps://juser.fz-juelich.de/record/862421/files/W1503625.pdf?subformat=pdfa$$xpdfa
000862421 8767_ $$8W1503625$$92019-04-17$$d2019-04-17$$eColour charges$$jZahlung erfolgt
000862421 909CO $$ooai:juser.fz-juelich.de:862421$$popenCost$$pOpenAPC$$pVDB
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich$$b0$$kFZJ
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165722$$aForschungszentrum Jülich$$b2$$kFZJ
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130068$$aForschungszentrum Jülich$$b3$$kFZJ
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130071$$aForschungszentrum Jülich$$b4$$kFZJ
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b7$$kFZJ
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b8$$kFZJ
000862421 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b9$$kExtern
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b9$$kFZJ
000862421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b10$$kFZJ
000862421 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000862421 9141_ $$y2019
000862421 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2017
000862421 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862421 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862421 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862421 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862421 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862421 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862421 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862421 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000862421 9801_ $$aAPC
000862421 980__ $$ajournal
000862421 980__ $$aVDB
000862421 980__ $$aI:(DE-Juel1)IEK-4-20101013
000862421 980__ $$aAPC
000862421 980__ $$aUNRESTRICTED
000862421 981__ $$aI:(DE-Juel1)IFN-1-20101013