000862448 001__ 862448
000862448 005__ 20240712100825.0
000862448 0247_ $$2doi$$a10.5194/acp-19-6085-2019
000862448 0247_ $$2ISSN$$a1680-7316
000862448 0247_ $$2ISSN$$a1680-7324
000862448 0247_ $$2WOS$$aWOS:000467412800004
000862448 0247_ $$2altmetric$$aaltmetric:60065544
000862448 0247_ $$2Handle$$a2128/22707
000862448 037__ $$aFZJ-2019-02760
000862448 082__ $$a550
000862448 1001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b0$$eCorresponding author$$ufzj
000862448 1112_ $$cVienna$$d2019-04-07 - 2019-04-12$$wAustria
000862448 245__ $$aHow robust are stratospheric age of air trends from different reanalyses?
000862448 260__ $$aKatlenburg-Lindau$$bSoc.$$c2019
000862448 3367_ $$2DRIVER$$aarticle
000862448 3367_ $$2DataCite$$aOutput Types/Journal article
000862448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562058698_18408
000862448 3367_ $$2BibTeX$$aARTICLE
000862448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862448 3367_ $$00$$2EndNote$$aJournal Article
000862448 520__ $$aAn accelerating Brewer–Dobson circulation (BDC) is a robust signal of climate change in model predictions but has been questioned by trace gas observations. We analyse the stratospheric mean age of air and the full age spectrum as measures for the BDC and its trend. Age of air is calculated using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim, JRA-55 and MERRA-2 reanalysis data to assess the robustness of the representation of the BDC in current generation meteorological reanalyses. We find that the climatological mean age significantly depends on the reanalysis, with JRA-55 showing the youngest and MERRA-2 the oldest mean age. Consideration of the age spectrum indicates that the older air for MERRA-2 is related to a stronger spectrum tail, which is likely associated with weaker tropical upwelling and stronger recirculation. Seasonality of stratospheric transport is robustly represented in reanalyses, with similar mean age variations and age spectrum peaks. Long-term changes from 1989 to 2015 turn out to be similar for the reanalyses with mainly decreasing mean age accompanied by a shift of the age spectrum peak towards shorter transit times, resembling the forced response in climate model simulations to increasing greenhouse gas concentrations. For the shorter periods, 1989–2001 and 2002–2015, the age of air changes are less robust. Only ERA-Interim shows the hemispheric dipole pattern in age changes from 2002 to 2015 as viewed by recent satellite observations. Consequently, the representation of decadal variability of the BDC in current generation reanalyses appears less robust and is a major uncertainty of modelling the BDC.
000862448 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000862448 588__ $$aDataset connected to CrossRef
000862448 7001_ $$0P:(DE-HGF)0$$aLegras, B.$$b1
000862448 7001_ $$0P:(DE-Juel1)171935$$aCharlesworth, Edward$$b2$$ufzj
000862448 7001_ $$0P:(DE-Juel1)169291$$aYan, Xiaolu$$b3$$ufzj
000862448 7001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou Abdoulaye$$b4$$ufzj
000862448 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b5$$ufzj
000862448 7001_ $$0P:(DE-HGF)0$$aBirner, Th.$$b6
000862448 7001_ $$0P:(DE-Juel1)156119$$aTao, Mengchu$$b7$$ufzj
000862448 7001_ $$0P:(DE-HGF)0$$aEngel, A.$$b8
000862448 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b9$$ufzj
000862448 773__ $$0PERI:(DE-600)2144416-X$$a10.5194/acp-19-6085-2019$$gVol. 19, no. 9, p. 6085 - 6105$$n9$$pEGU2019-2171$$tGeophysical research abstracts$$v21$$x1029-7006$$y2019
000862448 8564_ $$uhttps://juser.fz-juelich.de/record/862448/files/invoice_Helmholtz-PUC-2019-44%20.pdf
000862448 8564_ $$uhttps://juser.fz-juelich.de/record/862448/files/acp-19-6085-2019.pdf$$yOpenAccess
000862448 8564_ $$uhttps://juser.fz-juelich.de/record/862448/files/invoice_Helmholtz-PUC-2019-44%20.pdf?subformat=pdfa$$xpdfa
000862448 8564_ $$uhttps://juser.fz-juelich.de/record/862448/files/acp-19-6085-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862448 8767_ $$8Helmholtz-PUC-2019-44$$92019-07-01$$d2019-07-02$$eAPC$$jZahlung erfolgt$$pacp-2018-1281
000862448 909CO $$ooai:juser.fz-juelich.de:862448$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b0$$kFZJ
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171935$$aForschungszentrum Jülich$$b2$$kFZJ
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169291$$aForschungszentrum Jülich$$b3$$kFZJ
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b4$$kFZJ
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b5$$kFZJ
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156119$$aForschungszentrum Jülich$$b7$$kFZJ
000862448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b9$$kFZJ
000862448 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000862448 9141_ $$y2019
000862448 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862448 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862448 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862448 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000862448 9801_ $$aAPC
000862448 9801_ $$aFullTexts
000862448 980__ $$ajournal
000862448 980__ $$aVDB
000862448 980__ $$aUNRESTRICTED
000862448 980__ $$aI:(DE-Juel1)IEK-7-20101013
000862448 980__ $$aAPC
000862448 981__ $$aI:(DE-Juel1)ICE-4-20101013