001     862448
005     20240712100825.0
024 7 _ |a 10.5194/acp-19-6085-2019
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a WOS:000467412800004
|2 WOS
024 7 _ |a altmetric:60065544
|2 altmetric
024 7 _ |a 2128/22707
|2 Handle
037 _ _ |a FZJ-2019-02760
082 _ _ |a 550
100 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 0
|e Corresponding author
|u fzj
111 2 _ |c Vienna
|d 2019-04-07 - 2019-04-12
|w Austria
245 _ _ |a How robust are stratospheric age of air trends from different reanalyses?
260 _ _ |a Katlenburg-Lindau
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562058698_18408
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An accelerating Brewer–Dobson circulation (BDC) is a robust signal of climate change in model predictions but has been questioned by trace gas observations. We analyse the stratospheric mean age of air and the full age spectrum as measures for the BDC and its trend. Age of air is calculated using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim, JRA-55 and MERRA-2 reanalysis data to assess the robustness of the representation of the BDC in current generation meteorological reanalyses. We find that the climatological mean age significantly depends on the reanalysis, with JRA-55 showing the youngest and MERRA-2 the oldest mean age. Consideration of the age spectrum indicates that the older air for MERRA-2 is related to a stronger spectrum tail, which is likely associated with weaker tropical upwelling and stronger recirculation. Seasonality of stratospheric transport is robustly represented in reanalyses, with similar mean age variations and age spectrum peaks. Long-term changes from 1989 to 2015 turn out to be similar for the reanalyses with mainly decreasing mean age accompanied by a shift of the age spectrum peak towards shorter transit times, resembling the forced response in climate model simulations to increasing greenhouse gas concentrations. For the shorter periods, 1989–2001 and 2002–2015, the age of air changes are less robust. Only ERA-Interim shows the hemispheric dipole pattern in age changes from 2002 to 2015 as viewed by recent satellite observations. Consequently, the representation of decadal variability of the BDC in current generation reanalyses appears less robust and is a major uncertainty of modelling the BDC.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Legras, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Charlesworth, Edward
|0 P:(DE-Juel1)171935
|b 2
|u fzj
700 1 _ |a Yan, Xiaolu
|0 P:(DE-Juel1)169291
|b 3
|u fzj
700 1 _ |a Diallo, Mohamadou Abdoulaye
|0 P:(DE-Juel1)169614
|b 4
|u fzj
700 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 5
|u fzj
700 1 _ |a Birner, Th.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tao, Mengchu
|0 P:(DE-Juel1)156119
|b 7
|u fzj
700 1 _ |a Engel, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 9
|u fzj
773 _ _ |a 10.5194/acp-19-6085-2019
|g Vol. 19, no. 9, p. 6085 - 6105
|0 PERI:(DE-600)2144416-X
|n 9
|p EGU2019-2171
|t Geophysical research abstracts
|v 21
|y 2019
|x 1029-7006
856 4 _ |u https://juser.fz-juelich.de/record/862448/files/invoice_Helmholtz-PUC-2019-44%20.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862448/files/acp-19-6085-2019.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862448/files/invoice_Helmholtz-PUC-2019-44%20.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862448/files/acp-19-6085-2019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862448
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169291
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156119
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21