000862527 001__ 862527
000862527 005__ 20210130001432.0
000862527 0247_ $$2doi$$a10.1039/C9NH00156E
000862527 0247_ $$2ISSN$$a2055-6756
000862527 0247_ $$2ISSN$$a2055-6764
000862527 0247_ $$2altmetric$$aaltmetric:59407967
000862527 0247_ $$2WOS$$aWOS:000481910600010
000862527 037__ $$aFZJ-2019-02826
000862527 041__ $$aEnglish
000862527 082__ $$a540
000862527 1001_ $$0P:(DE-Juel1)161485$$aWang, Rui$$b0$$ufzj
000862527 245__ $$aMonitoring the morphological evolution in mixed-dimensional lead bromide perovskite film with lamellar-stacked perovskite nanoplatelets
000862527 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2019
000862527 3367_ $$2DRIVER$$aarticle
000862527 3367_ $$2DataCite$$aOutput Types/Journal article
000862527 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586006673_29485
000862527 3367_ $$2BibTeX$$aARTICLE
000862527 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862527 3367_ $$00$$2EndNote$$aJournal Article
000862527 520__ $$aMixed-dimensional lead bromide perovskite films combine the properties of both three-dimensional (3D) and two-dimensional (2D) perovskite crystals, and due to their good humidity tolerance, they emerge as promising candidates for long-term stable optoelectronic applications. In order to further tailor the film morphology aiming for a better device performance, it is important to unravel the structural formation mechanism in these perovskite thin films. In the present study, the formation of 3D lead bromide perovskite crystals and the self-assembly of lamellar-stacked 2D perovskite nanoplatelets are comprehensively studied. Samples are prepared through a two-step vapor assisted route with different vapor exposure times in order to monitor the detailed morphology at the specific reaction stage. With grazing incidence X-ray scattering techniques, the preferential orientation of the 3D crystals is found to decrease upon increasing the reaction time. Also, it is evidenced that well-ordered in-plane lamellar-stacked 2D nanoplatelets form aggregates in the bulk structure only. The obtained hierarchical morphology shows excellent structural stability in a humid atmosphere even at a relative humidity level of 80%. Our findings statistically offer a morphological understanding, which is important for the optimization of the sample preparation route and thus the resulting performance of moisture-tolerant perovskite based optoelectronic devices.
000862527 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000862527 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x1
000862527 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000862527 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x3
000862527 588__ $$aDataset connected to CrossRef
000862527 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000862527 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000862527 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000862527 693__ $$0EXP:(DE-MLZ)N-REX-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)N-REX-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eNREX: Neutron reflectometer with X-ray option$$fNL1$$x1
000862527 7001_ $$0P:(DE-HGF)0$$aTong, Yu$$b1
000862527 7001_ $$0P:(DE-Juel1)144117$$aWang, Kun$$b2
000862527 7001_ $$0P:(DE-HGF)0$$aXia, Senlin$$b3
000862527 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b4$$ufzj
000862527 7001_ $$0P:(DE-HGF)0$$aSoltwedel, Olaf$$b5
000862527 7001_ $$0P:(DE-HGF)0$$aMüller-Buschbaum, Peter$$b6$$eCorresponding author
000862527 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b7$$eCorresponding author$$ufzj
000862527 773__ $$0PERI:(DE-600)2840770-2$$a10.1039/C9NH00156E$$gp. 10.1039.C9NH00156E$$n5$$p1139-1144$$tNanoscale horizons$$v4$$x2055-6764$$y2019
000862527 8564_ $$uhttps://juser.fz-juelich.de/record/862527/files/c9nh00156e.pdf$$yRestricted
000862527 8564_ $$uhttps://juser.fz-juelich.de/record/862527/files/MnAll.pdf$$yRestricted
000862527 8564_ $$uhttps://juser.fz-juelich.de/record/862527/files/c9nh00156e.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862527 909CO $$ooai:juser.fz-juelich.de:862527$$pVDB$$pVDB:MLZ
000862527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161485$$aForschungszentrum Jülich$$b0$$kFZJ
000862527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b4$$kFZJ
000862527 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b7$$kFZJ
000862527 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000862527 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000862527 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000862527 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x3
000862527 9141_ $$y2019
000862527 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000862527 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE HORIZ : 2017
000862527 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862527 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862527 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862527 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862527 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862527 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862527 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE HORIZ : 2017
000862527 920__ $$lyes
000862527 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000862527 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000862527 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000862527 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000862527 980__ $$ajournal
000862527 980__ $$aVDB
000862527 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000862527 980__ $$aI:(DE-588b)4597118-3
000862527 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000862527 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000862527 980__ $$aUNRESTRICTED