000862792 001__ 862792
000862792 005__ 20240313103118.0
000862792 0247_ $$2doi$$a10.1371/journal.pcbi.1006781
000862792 0247_ $$2ISSN$$a1553-734X
000862792 0247_ $$2ISSN$$a1553-7358
000862792 0247_ $$2Handle$$a2128/23052
000862792 0247_ $$2altmetric$$aaltmetric:59518892
000862792 0247_ $$2pmid$$apmid:31022182
000862792 0247_ $$2WOS$$aWOS:000467530600025
000862792 037__ $$aFZJ-2019-03013
000862792 082__ $$a610
000862792 1001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b0$$eCorresponding author
000862792 245__ $$aLeveraging heterogeneity for neural computation with fading memory in layer 2/3 cortical microcircuits
000862792 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2019
000862792 3367_ $$2DRIVER$$aarticle
000862792 3367_ $$2DataCite$$aOutput Types/Journal article
000862792 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613576018_15851
000862792 3367_ $$2BibTeX$$aARTICLE
000862792 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862792 3367_ $$00$$2EndNote$$aJournal Article
000862792 520__ $$aComplexity and heterogeneity are intrinsic to neurobiological systems, manifest in every process, at every scale, and are inextricably linked to the systems’ emergent collective behaviours and function. However, the majority of studies addressing the dynamics and computational properties of biologically inspired cortical microcircuits tend to assume (often for the sake of analytical tractability) a great degree of homogeneity in both neuronal and synaptic/connectivity parameters. While simplification and reductionism are necessary to understand the brain’s functional principles, disregarding the existence of the multiple heterogeneities in the cortical composition, which may be at the core of its computational proficiency, will inevitably fail to account for important phenomena and limit the scope and generalizability of cortical models. We address these issues by studying the individual and composite functional roles of heterogeneities in neuronal, synaptic and structural properties in a biophysically plausible layer 2/3 microcircuit model, built and constrained by multiple sources of empirical data. This approach was made possible by the emergence of large-scale, well curated databases, as well as the substantial improvements in experimental methodologies achieved over the last few years. Our results show that variability in single neuron parameters is the dominant source of functional specialization, leading to highly proficient microcircuits with much higher computational power than their homogeneous counterparts. We further show that fully heterogeneous circuits, which are closest to the biophysical reality, owe their response properties to the differential contribution of different sources of heterogeneity.
000862792 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000862792 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x1
000862792 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000862792 536__ $$0G:(DE-Juel1)jinm60_20190501$$aFunctional Neural Architectures (jinm60_20190501)$$cjinm60_20190501$$fFunctional Neural Architectures$$x3
000862792 588__ $$aDataset connected to CrossRef
000862792 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b1$$ufzj
000862792 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1006781$$gVol. 15, no. 4, p. e1006781 -$$n4$$pe1006781 -$$tPLoS Computational Biology$$v15$$x1553-7358$$y2019
000862792 8564_ $$uhttps://juser.fz-juelich.de/record/862792/files/journal.pcbi.1006781.pdf$$yOpenAccess
000862792 8564_ $$uhttps://juser.fz-juelich.de/record/862792/files/journal.pcbi.1006781.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862792 8767_ $$8PAB241742$$92019-05-01$$d2019-05-17$$eAPC$$jDeposit$$lDeposit: PLoS$$pPCOMPBIOL-D-18-00447$$z2250 USD
000862792 909CO $$ooai:juser.fz-juelich.de:862792$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165640$$aForschungszentrum Jülich$$b0$$kFZJ
000862792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b1$$kFZJ
000862792 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000862792 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000862792 9141_ $$y2019
000862792 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862792 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862792 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862792 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862792 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2017
000862792 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862792 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862792 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862792 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862792 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862792 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862792 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862792 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862792 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862792 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862792 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862792 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000862792 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000862792 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000862792 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000862792 9801_ $$aAPC
000862792 9801_ $$aFullTexts
000862792 980__ $$ajournal
000862792 980__ $$aVDB
000862792 980__ $$aI:(DE-Juel1)INM-6-20090406
000862792 980__ $$aI:(DE-Juel1)IAS-6-20130828
000862792 980__ $$aI:(DE-Juel1)INM-10-20170113
000862792 980__ $$aI:(DE-82)080012_20140620
000862792 980__ $$aAPC
000862792 980__ $$aUNRESTRICTED
000862792 981__ $$aI:(DE-Juel1)IAS-6-20130828