000862800 001__ 862800
000862800 005__ 20240619091245.0
000862800 0247_ $$2doi$$a10.3389/fchem.2019.00351
000862800 0247_ $$2Handle$$a2128/22669
000862800 0247_ $$2altmetric$$aaltmetric:60548870
000862800 0247_ $$2pmid$$apmid:31157213
000862800 0247_ $$2WOS$$aWOS:000468136200001
000862800 037__ $$aFZJ-2019-03019
000862800 082__ $$a540
000862800 1001_ $$0P:(DE-Juel1)159561$$aKoposova, Ekaterina A.$$b0
000862800 245__ $$aPhotoresponsive Porphyrin Nanotubes of Meso-tetra(4-Sulfonatophenyl)Porphyrin and Sn(IV) meso-tetra(4-pyridyl)porphyrin
000862800 260__ $$aLausanne$$bFrontiers Media$$c2019
000862800 3367_ $$2DRIVER$$aarticle
000862800 3367_ $$2DataCite$$aOutput Types/Journal article
000862800 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1567770762_16307
000862800 3367_ $$2BibTeX$$aARTICLE
000862800 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862800 3367_ $$00$$2EndNote$$aJournal Article
000862800 520__ $$aPorphyrin macrocycles and their supramolecular nanoassemblies are being widely explored in energy harvesting, sensor development, catalysis, and medicine because of a good tunability of their light-induced charge separation and electron/energy transfer properties. In the present work, we prepared and studied photoresponsive porphyrin nanotubes formed by the self-assembly of meso-tetrakis(4-sulfonatophenyl)porphyrin and Sn(IV) meso-tetra(4-pyridyl)porphyrin. Scanning electron microscopy and transmission electron microscopy showed that these tubular nanostructures were hollow with open ends and their length was 0.4–0.8 μm, the inner diameter was 7–15 nm, and the outer diameter was 30–70 nm. Porphyrin tectons, H4TPPS2−4 : Sn(IV)TPyP4+, self-assemble into the nanotubes in a ratio of 2:1, respectively, as determined by the elemental analysis. The photoconductivity of the porphyrin nanotubes was determined to be as high as 3.1 × 10−4 S m−1, and the dependence of the photoconductance on distance and temperature was investigated. Excitation of the Q-band region with a Q-band of SnTPyP4+ (550–552 nm) and the band at 714 nm, which is associated with J-aggregation, was responsible for about 34 % of the photoconductive activity of the H4TPPS2−4-Sn(IV)TPyP4+ porphyrin nanotubes. The sensor properties of the H4TPPS2−4- Sn(IV)TPyP4+ nanotubes in the presence of iodine vapor and salicylate anions down to millimolar range were examined in a chemiresistor sensing mode. We have shown that the porphyrin nanotubes advantageously combine the characteristics of a sensor and a transducer, thus demonstrating their great potential as efficient functional layers for sensing devices and biomimetic nanoarchitectures.
000862800 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000862800 588__ $$aDataset connected to CrossRef
000862800 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b1
000862800 7001_ $$0P:(DE-HGF)0$$aErmolenko, Yuri E.$$b2
000862800 7001_ $$0P:(DE-Juel1)128710$$aMourzina, Youlia$$b3$$eCorresponding author$$ufzj
000862800 773__ $$0PERI:(DE-600)2711776-5$$a10.3389/fchem.2019.00351$$gVol. 7, p. 351$$p351$$tFrontiers in Chemistry$$v7$$x2296-2646$$y2019
000862800 8564_ $$uhttps://juser.fz-juelich.de/record/862800/files/2019-0174773-5.pdf
000862800 8564_ $$uhttps://juser.fz-juelich.de/record/862800/files/2019-0174773-5.pdf?subformat=pdfa$$xpdfa
000862800 8564_ $$uhttps://juser.fz-juelich.de/record/862800/files/fchem-07-00351.pdf$$yOpenAccess
000862800 8564_ $$uhttps://juser.fz-juelich.de/record/862800/files/fchem-07-00351.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862800 8767_ $$82019-0174773-5$$92019-04-29$$d2019-05-23$$eAPC$$jDeposit$$lDeposit: Frontiers$$z340 USD
000862800 909CO $$ooai:juser.fz-juelich.de:862800$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000862800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b1$$kFZJ
000862800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128710$$aForschungszentrum Jülich$$b3$$kFZJ
000862800 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000862800 9141_ $$y2019
000862800 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862800 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862800 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CHEM : 2017
000862800 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862800 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862800 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862800 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862800 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862800 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862800 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000862800 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862800 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862800 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862800 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862800 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862800 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000862800 9801_ $$aAPC
000862800 9801_ $$aFullTexts
000862800 980__ $$ajournal
000862800 980__ $$aVDB
000862800 980__ $$aUNRESTRICTED
000862800 980__ $$aI:(DE-Juel1)ICS-8-20110106
000862800 980__ $$aAPC
000862800 981__ $$aI:(DE-Juel1)IBI-3-20200312