000863051 001__ 863051
000863051 005__ 20210130001805.0
000863051 0247_ $$2doi$$a10.1002/mrm.27797
000863051 0247_ $$2ISSN$$a0740-3194
000863051 0247_ $$2ISSN$$a1522-2594
000863051 0247_ $$2altmetric$$aaltmetric:61402073
000863051 0247_ $$2pmid$$apmid:31148282
000863051 0247_ $$2WOS$$aWOS:000483917000005
000863051 037__ $$aFZJ-2019-03173
000863051 082__ $$a610
000863051 1001_ $$00000-0003-3930-3415$$aClaeser, Robert$$b0
000863051 245__ $$aSub‐millimeter T 1 mapping of rapidly relaxing compartments with gradient delay corrected spiral TAPIR and compressed sensing at 3T
000863051 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2019
000863051 3367_ $$2DRIVER$$aarticle
000863051 3367_ $$2DataCite$$aOutput Types/Journal article
000863051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563200024_12474
000863051 3367_ $$2BibTeX$$aARTICLE
000863051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863051 3367_ $$00$$2EndNote$$aJournal Article
000863051 520__ $$aPurposeThe TAPIR sequence is an accurate and efficient method for T1 mapping. It combines a slice‐interleaving Look‐Locker read‐out with an acquisition of multiple k‐space lines in 1 shot. Whereas the acquisition of multiple lines per excitation increases imaging speed, the corresponding increase in TR and TE is detrimental to the T1 fitting performance. This is especially problematic for substances exhibiting rapid T2* relaxation (e.g., myelin water).MethodsThe T1 fitting performance of TAPIR is enhanced by using an interleaved spiral read‐out with shorter TE and TR. Furthermore, an improvement to a method for fast gradient delay estimation is presented. Whereas previous methods assume the gradient delay to be stationary, the presented approach corrects the spiral k‐space trajectory by using a polynomial fit of the measured gradient delays.ResultsGradient delay artifacts are largely eliminated, requiring very little additional scanning time. The sampling efficiency of the spiral read‐out allows for a significant reduction of the acquisition time in comparison to Cartesian TAPIR. Spiral TAPIR enables the sampling of more slices and an accurate measurement of rapidly relaxing compartments. Over a wide T1 range (448–3115 ms), spiral TAPIR reduces the mean fitting error from −2.5% to −0.1%. Combining 50% undersampling with the shorter TR of spiral TAPIR, an increase in imaging speed by a factor of up to 3.3 was achieved.ConclusionUsing a spiral read‐out trajectory, the established TAPIR sequence enables measurement of rapidly relaxing T1 compartments, while improving T1 mapping performance and imaging speed.
000863051 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000863051 588__ $$aDataset connected to CrossRef
000863051 7001_ $$0P:(DE-Juel1)162442$$aZimmermann, Markus$$b1
000863051 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$eCorresponding author$$ufzj
000863051 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27797$$gp. mrm.27797$$n4$$p1288-1300$$tMagnetic resonance in medicine$$v82$$x1522-2594$$y2019
000863051 8564_ $$uhttps://juser.fz-juelich.de/record/863051/files/mrm.27797.pdf$$yRestricted
000863051 8564_ $$uhttps://juser.fz-juelich.de/record/863051/files/mrm.27797.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863051 909CO $$ooai:juser.fz-juelich.de:863051$$pVDB
000863051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162442$$aForschungszentrum Jülich$$b1$$kFZJ
000863051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000863051 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000863051 9141_ $$y2019
000863051 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000863051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863051 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863051 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863051 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000863051 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000863051 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863051 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863051 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000863051 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000863051 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000863051 980__ $$ajournal
000863051 980__ $$aVDB
000863051 980__ $$aI:(DE-Juel1)INM-4-20090406
000863051 980__ $$aI:(DE-Juel1)INM-11-20170113
000863051 980__ $$aI:(DE-82)080010_20140620
000863051 980__ $$aUNRESTRICTED