001     863051
005     20210130001805.0
024 7 _ |a 10.1002/mrm.27797
|2 doi
024 7 _ |a 0740-3194
|2 ISSN
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a altmetric:61402073
|2 altmetric
024 7 _ |a pmid:31148282
|2 pmid
024 7 _ |a WOS:000483917000005
|2 WOS
037 _ _ |a FZJ-2019-03173
082 _ _ |a 610
100 1 _ |a Claeser, Robert
|0 0000-0003-3930-3415
|b 0
245 _ _ |a Sub‐millimeter T 1 mapping of rapidly relaxing compartments with gradient delay corrected spiral TAPIR and compressed sensing at 3T
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1563200024_12474
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeThe TAPIR sequence is an accurate and efficient method for T1 mapping. It combines a slice‐interleaving Look‐Locker read‐out with an acquisition of multiple k‐space lines in 1 shot. Whereas the acquisition of multiple lines per excitation increases imaging speed, the corresponding increase in TR and TE is detrimental to the T1 fitting performance. This is especially problematic for substances exhibiting rapid T2* relaxation (e.g., myelin water).MethodsThe T1 fitting performance of TAPIR is enhanced by using an interleaved spiral read‐out with shorter TE and TR. Furthermore, an improvement to a method for fast gradient delay estimation is presented. Whereas previous methods assume the gradient delay to be stationary, the presented approach corrects the spiral k‐space trajectory by using a polynomial fit of the measured gradient delays.ResultsGradient delay artifacts are largely eliminated, requiring very little additional scanning time. The sampling efficiency of the spiral read‐out allows for a significant reduction of the acquisition time in comparison to Cartesian TAPIR. Spiral TAPIR enables the sampling of more slices and an accurate measurement of rapidly relaxing compartments. Over a wide T1 range (448–3115 ms), spiral TAPIR reduces the mean fitting error from −2.5% to −0.1%. Combining 50% undersampling with the shorter TR of spiral TAPIR, an increase in imaging speed by a factor of up to 3.3 was achieved.ConclusionUsing a spiral read‐out trajectory, the established TAPIR sequence enables measurement of rapidly relaxing T1 compartments, while improving T1 mapping performance and imaging speed.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zimmermann, Markus
|0 P:(DE-Juel1)162442
|b 1
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/mrm.27797
|g p. mrm.27797
|0 PERI:(DE-600)1493786-4
|n 4
|p 1288-1300
|t Magnetic resonance in medicine
|v 82
|y 2019
|x 1522-2594
856 4 _ |u https://juser.fz-juelich.de/record/863051/files/mrm.27797.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/863051/files/mrm.27797.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:863051
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21