Journal Article FZJ-2019-03299

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Truncated Octahedral High-Voltage Spinel LiNi 0.5 Mn 1.5 O 4 Cathode Materials for Lithium Ion Batteries: Positive Influences of Ni/Mn Disordering and Oxygen Vacancies

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Electrochemical Soc. Pennington, NJ

Journal of the Electrochemical Society 165(9), A1886 - A1896 () [10.1149/2.1241809jes]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Micron-sized truncated octahedral LiNi0.5Mn1.5O4 (LNMO) samples with different degrees of Ni/Mn disordering have been obtained by controlling the synthesis conditions, such as calcination atmosphere (O2 and air), cooling rate or additional annealing step. The influences of Ni/Mn disordering on the physical properties and electrochemical performance of the truncated octahedral LNMO samples have been systematically investigated. The analyses of thermogravimetry, X-ray photoelectron spectroscopy, X-ray diffraction, powder neutron diffraction, Raman spectroscopy and X-ray absorption spectroscopy reveal that the occurrence and degree of Ni/Mn disordering are closely related with the formation of oxygen vacancies and presence of Mn3+. Slow cooling rate and post-annealing can result in low degrees of Ni/Mn disordering and oxygen vacancies. Electrochemical measurements show that Ni/Mn disordering and oxygen vacancies have no obvious effect on the rate capability since all LNMO samples share a truncated octahedral morphology with the exposed {100} surfaces. However, they play significant roles in improving long-term cycling stability, especially at the elevated temperature of 60°C. This work suggests that the electrochemical performance of LNMO with optimized truncated morphology can be further enhanced through tuning the degrees of Ni/Mn disordering and oxygen vacancies.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database

 Record created 2019-06-12, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)