000863205 001__ 863205
000863205 005__ 20240712113104.0
000863205 0247_ $$2doi$$a10.1149/2.1241809jes
000863205 0247_ $$2ISSN$$a0013-4651
000863205 0247_ $$2ISSN$$a0096-4743
000863205 0247_ $$2ISSN$$a0096-4786
000863205 0247_ $$2ISSN$$a1945-6859
000863205 0247_ $$2ISSN$$a1945-7111
000863205 0247_ $$2ISSN$$a2002-2015
000863205 0247_ $$2ISSN$$a2156-7395
000863205 0247_ $$2WOS$$aWOS:000440924800040
000863205 037__ $$aFZJ-2019-03299
000863205 082__ $$a660
000863205 1001_ $$00000-0001-8519-3240$$aLiu, Haidong$$b0
000863205 245__ $$aTruncated Octahedral High-Voltage Spinel LiNi 0.5 Mn 1.5 O 4 Cathode Materials for Lithium Ion Batteries: Positive Influences of Ni/Mn Disordering and Oxygen Vacancies
000863205 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2018
000863205 3367_ $$2DRIVER$$aarticle
000863205 3367_ $$2DataCite$$aOutput Types/Journal article
000863205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575014703_25886
000863205 3367_ $$2BibTeX$$aARTICLE
000863205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863205 3367_ $$00$$2EndNote$$aJournal Article
000863205 520__ $$aMicron-sized truncated octahedral LiNi0.5Mn1.5O4 (LNMO) samples with different degrees of Ni/Mn disordering have been obtained by controlling the synthesis conditions, such as calcination atmosphere (O2 and air), cooling rate or additional annealing step. The influences of Ni/Mn disordering on the physical properties and electrochemical performance of the truncated octahedral LNMO samples have been systematically investigated. The analyses of thermogravimetry, X-ray photoelectron spectroscopy, X-ray diffraction, powder neutron diffraction, Raman spectroscopy and X-ray absorption spectroscopy reveal that the occurrence and degree of Ni/Mn disordering are closely related with the formation of oxygen vacancies and presence of Mn3+. Slow cooling rate and post-annealing can result in low degrees of Ni/Mn disordering and oxygen vacancies. Electrochemical measurements show that Ni/Mn disordering and oxygen vacancies have no obvious effect on the rate capability since all LNMO samples share a truncated octahedral morphology with the exposed {100} surfaces. However, they play significant roles in improving long-term cycling stability, especially at the elevated temperature of 60°C. This work suggests that the electrochemical performance of LNMO with optimized truncated morphology can be further enhanced through tuning the degrees of Ni/Mn disordering and oxygen vacancies.
000863205 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863205 588__ $$aDataset connected to CrossRef
000863205 7001_ $$0P:(DE-HGF)0$$aZhang, Xiaofei$$b1
000863205 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b2$$ufzj
000863205 7001_ $$00000-0002-1473-8992$$aSenyshyn, Anatoliy$$b3
000863205 7001_ $$0P:(DE-HGF)0$$aWilken, Andrea$$b4
000863205 7001_ $$0P:(DE-HGF)0$$aZhou, Dong$$b5
000863205 7001_ $$0P:(DE-HGF)0$$aFromm, Olga$$b6
000863205 7001_ $$0P:(DE-HGF)0$$aNiehoff, Philip$$b7
000863205 7001_ $$0P:(DE-Juel1)169694$$aYan, Bo$$b8$$ufzj
000863205 7001_ $$0P:(DE-Juel1)169876$$aLi, Jinke$$b9$$ufzj
000863205 7001_ $$0P:(DE-HGF)0$$aMuehlbauer, Martin$$b10
000863205 7001_ $$0P:(DE-Juel1)168392$$aWang, Jun$$b11
000863205 7001_ $$0P:(DE-HGF)0$$aSchumacher, Gerhard$$b12
000863205 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b13$$ufzj
000863205 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b14$$ufzj
000863205 7001_ $$0P:(DE-Juel1)174577$$aLi, Jie$$b15$$eCorresponding author$$ufzj
000863205 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.1241809jes$$gVol. 165, no. 9, p. A1886 - A1896$$n9$$pA1886 - A1896$$tJournal of the Electrochemical Society$$v165$$x1945-7111$$y2018
000863205 8564_ $$uhttps://juser.fz-juelich.de/record/863205/files/J.%20Electrochem.%20Soc.-2018-Liu-A1886-96.pdf$$yRestricted
000863205 8564_ $$uhttps://juser.fz-juelich.de/record/863205/files/J.%20Electrochem.%20Soc.-2018-Liu-A1886-96.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863205 909CO $$ooai:juser.fz-juelich.de:863205$$pVDB
000863205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169319$$aForschungszentrum Jülich$$b2$$kFZJ
000863205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169694$$aForschungszentrum Jülich$$b8$$kFZJ
000863205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169876$$aForschungszentrum Jülich$$b9$$kFZJ
000863205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b13$$kFZJ
000863205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b14$$kFZJ
000863205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174577$$aForschungszentrum Jülich$$b15$$kFZJ
000863205 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863205 9141_ $$y2019
000863205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2017
000863205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863205 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863205 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863205 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863205 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000863205 980__ $$ajournal
000863205 980__ $$aVDB
000863205 980__ $$aI:(DE-Juel1)IEK-12-20141217
000863205 980__ $$aUNRESTRICTED
000863205 981__ $$aI:(DE-Juel1)IMD-4-20141217