000863429 001__ 863429
000863429 005__ 20210130002113.0
000863429 0247_ $$2doi$$a10.1071/SR18300
000863429 0247_ $$2ISSN$$a0004-9573
000863429 0247_ $$2ISSN$$a1446-568X
000863429 0247_ $$2ISSN$$a1838-675X
000863429 0247_ $$2ISSN$$a1838-6768
000863429 0247_ $$2WOS$$aWOS:000463909500009
000863429 0247_ $$2Handle$$a2128/22635
000863429 037__ $$aFZJ-2019-03494
000863429 082__ $$a640
000863429 1001_ $$0P:(DE-HGF)0$$aGomes, J.$$b0
000863429 245__ $$aUrea and legume residues as 15N-N2O sources in a subtropical soil
000863429 260__ $$aCollingwood, Victoria$$bCSIRO$$c2019
000863429 3367_ $$2DRIVER$$aarticle
000863429 3367_ $$2DataCite$$aOutput Types/Journal article
000863429 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582035452_1128
000863429 3367_ $$2BibTeX$$aARTICLE
000863429 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863429 3367_ $$00$$2EndNote$$aJournal Article
000863429 520__ $$aIn this work, we used the 15N labelling technique to identify the sources of N2O emitted by a subtropical soil following application of mineral nitrogen (N) fertiliser (urea) and residues of a legume cover crop (cowpea). For this purpose, a 45-day incubation experiment was conducted by subjecting undisturbed soil cores from a subtropical Acrisol to five different treatments: (1) control (no crop residue or fertiliser-N application); (2) 15N-labelled cowpea residue (200 μg N g–1 soil); (3) 15N-labelled urea (200 μg N g–1 soil); (4) 15N-labelled cowpea residue (100 μg N g–1 soil) + unlabelled urea (100 μg N g–1 soil); and (5) unlabelled cowpea residue (100 μg N g–1 soil) + 15N-labelled urea (100 μg N g–1 soil). Cores were analysed for total N2O formation, δ15N-N2O and δ18O-N2O by continuous flow isotope ratio mass spectrometry, as well as for total NO3–-N and NH4+-N. Legume crop residues and mineral fertiliser increased N2O emissions from soil to 10.5 and 9.7 µg N2O-N cm–2 respectively, which was roughly six times the value for control (1.5 µg N2O-N cm–2). The amount of 15N2O emitted from labelled 15N-urea (0.40–0.45% of 15N applied) was greater than from 15N-cowpea residues (0.013–0.015% of 15N applied). Unlike N-poor crop residues, urea in combination with N-rich residues (cowpea) failed to reduce N2O emissions relative to urea alone. Legume cover crops thus provide an effective mitigation strategy for N2O emissions in relation to mineral N fertilisation in climate-smart agriculture. Judging by our inconclusive results, however, using urea in combination with N-rich residues provides no clear-cut environmental advantage.
000863429 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000863429 588__ $$aDataset connected to CrossRef
000863429 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, N.$$b1
000863429 7001_ $$0P:(DE-HGF)0$$aDick, D. P.$$b2
000863429 7001_ $$0P:(DE-HGF)0$$aPedroso, G. M.$$b3
000863429 7001_ $$0P:(DE-HGF)0$$aVeloso, M.$$b4
000863429 7001_ $$00000-0001-8553-7330$$aBayer, C.$$b5$$eCorresponding author
000863429 773__ $$0PERI:(DE-600)2600572-4$$a10.1071/SR18300$$gVol. 57, no. 3, p. 287 -$$n3$$p287 - 293$$tSoil research$$v57$$x1838-675X$$y2019
000863429 8564_ $$uhttps://juser.fz-juelich.de/record/863429/files/Gomes%20etal%202019%20%28Soil%20Research%2057%20287%29%20Postprint%20%28002%29.pdf$$yOpenAccess
000863429 8564_ $$uhttps://juser.fz-juelich.de/record/863429/files/Gomes%20etal%202019%20%28Soil%20Research%2057%20287%29%20Postprint%20%28002%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863429 909CO $$ooai:juser.fz-juelich.de:863429$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000863429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b1$$kFZJ
000863429 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000863429 9141_ $$y2019
000863429 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863429 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863429 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOIL RES : 2017
000863429 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863429 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863429 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863429 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863429 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863429 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000863429 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863429 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000863429 980__ $$ajournal
000863429 980__ $$aVDB
000863429 980__ $$aI:(DE-Juel1)IBG-3-20101118
000863429 980__ $$aUNRESTRICTED
000863429 9801_ $$aFullTexts