Journal Article FZJ-2019-03494

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Urea and legume residues as 15N-N2O sources in a subtropical soil

 ;  ;  ;  ;  ;

2019
CSIRO Collingwood, Victoria

Soil research 57(3), 287 - 293 () [10.1071/SR18300]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this work, we used the 15N labelling technique to identify the sources of N2O emitted by a subtropical soil following application of mineral nitrogen (N) fertiliser (urea) and residues of a legume cover crop (cowpea). For this purpose, a 45-day incubation experiment was conducted by subjecting undisturbed soil cores from a subtropical Acrisol to five different treatments: (1) control (no crop residue or fertiliser-N application); (2) 15N-labelled cowpea residue (200 μg N g–1 soil); (3) 15N-labelled urea (200 μg N g–1 soil); (4) 15N-labelled cowpea residue (100 μg N g–1 soil) + unlabelled urea (100 μg N g–1 soil); and (5) unlabelled cowpea residue (100 μg N g–1 soil) + 15N-labelled urea (100 μg N g–1 soil). Cores were analysed for total N2O formation, δ15N-N2O and δ18O-N2O by continuous flow isotope ratio mass spectrometry, as well as for total NO3–-N and NH4+-N. Legume crop residues and mineral fertiliser increased N2O emissions from soil to 10.5 and 9.7 µg N2O-N cm–2 respectively, which was roughly six times the value for control (1.5 µg N2O-N cm–2). The amount of 15N2O emitted from labelled 15N-urea (0.40–0.45% of 15N applied) was greater than from 15N-cowpea residues (0.013–0.015% of 15N applied). Unlike N-poor crop residues, urea in combination with N-rich residues (cowpea) failed to reduce N2O emissions relative to urea alone. Legume cover crops thus provide an effective mitigation strategy for N2O emissions in relation to mineral N fertilisation in climate-smart agriculture. Judging by our inconclusive results, however, using urea in combination with N-rich residues provides no clear-cut environmental advantage.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2019
Database coverage:
OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-06-24, last modified 2021-01-30