Hauptseite > Publikationsdatenbank > Urea and legume residues as 15N-N2O sources in a subtropical soil > print |
001 | 863429 | ||
005 | 20210130002113.0 | ||
024 | 7 | _ | |a 10.1071/SR18300 |2 doi |
024 | 7 | _ | |a 0004-9573 |2 ISSN |
024 | 7 | _ | |a 1446-568X |2 ISSN |
024 | 7 | _ | |a 1838-675X |2 ISSN |
024 | 7 | _ | |a 1838-6768 |2 ISSN |
024 | 7 | _ | |a WOS:000463909500009 |2 WOS |
024 | 7 | _ | |a 2128/22635 |2 Handle |
037 | _ | _ | |a FZJ-2019-03494 |
082 | _ | _ | |a 640 |
100 | 1 | _ | |a Gomes, J. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Urea and legume residues as 15N-N2O sources in a subtropical soil |
260 | _ | _ | |a Collingwood, Victoria |c 2019 |b CSIRO |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1582035452_1128 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this work, we used the 15N labelling technique to identify the sources of N2O emitted by a subtropical soil following application of mineral nitrogen (N) fertiliser (urea) and residues of a legume cover crop (cowpea). For this purpose, a 45-day incubation experiment was conducted by subjecting undisturbed soil cores from a subtropical Acrisol to five different treatments: (1) control (no crop residue or fertiliser-N application); (2) 15N-labelled cowpea residue (200 μg N g–1 soil); (3) 15N-labelled urea (200 μg N g–1 soil); (4) 15N-labelled cowpea residue (100 μg N g–1 soil) + unlabelled urea (100 μg N g–1 soil); and (5) unlabelled cowpea residue (100 μg N g–1 soil) + 15N-labelled urea (100 μg N g–1 soil). Cores were analysed for total N2O formation, δ15N-N2O and δ18O-N2O by continuous flow isotope ratio mass spectrometry, as well as for total NO3–-N and NH4+-N. Legume crop residues and mineral fertiliser increased N2O emissions from soil to 10.5 and 9.7 µg N2O-N cm–2 respectively, which was roughly six times the value for control (1.5 µg N2O-N cm–2). The amount of 15N2O emitted from labelled 15N-urea (0.40–0.45% of 15N applied) was greater than from 15N-cowpea residues (0.013–0.015% of 15N applied). Unlike N-poor crop residues, urea in combination with N-rich residues (cowpea) failed to reduce N2O emissions relative to urea alone. Legume cover crops thus provide an effective mitigation strategy for N2O emissions in relation to mineral N fertilisation in climate-smart agriculture. Judging by our inconclusive results, however, using urea in combination with N-rich residues provides no clear-cut environmental advantage. |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Brüggemann, N. |0 P:(DE-Juel1)142357 |b 1 |
700 | 1 | _ | |a Dick, D. P. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Pedroso, G. M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Veloso, M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bayer, C. |0 0000-0001-8553-7330 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1071/SR18300 |g Vol. 57, no. 3, p. 287 - |0 PERI:(DE-600)2600572-4 |n 3 |p 287 - 293 |t Soil research |v 57 |y 2019 |x 1838-675X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/863429/files/Gomes%20etal%202019%20%28Soil%20Research%2057%20287%29%20Postprint%20%28002%29.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/863429/files/Gomes%20etal%202019%20%28Soil%20Research%2057%20287%29%20Postprint%20%28002%29.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:863429 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)142357 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOIL RES : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|