000863561 001__ 863561
000863561 005__ 20240711092308.0
000863561 0247_ $$2doi$$a10.3390/met9060692
000863561 0247_ $$2Handle$$a2128/22466
000863561 0247_ $$2WOS$$aWOS:000475356500076
000863561 037__ $$aFZJ-2019-03600
000863561 082__ $$a530
000863561 1001_ $$0P:(DE-HGF)0$$aGiese, Sven$$b0$$eCorresponding author
000863561 245__ $$aInfluence of Different Annealing Atmospheres on the Mechanical Properties of Freestanding MCrAlY Bond Coats Investigated by Micro-Tensile Creep Tests
000863561 260__ $$aBasel$$bMDPI$$c2019
000863561 3367_ $$2DRIVER$$aarticle
000863561 3367_ $$2DataCite$$aOutput Types/Journal article
000863561 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562844987_29360
000863561 3367_ $$2BibTeX$$aARTICLE
000863561 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863561 3367_ $$00$$2EndNote$$aJournal Article
000863561 520__ $$aThe mechanical properties of low-pressure plasma sprayed (LPPS) MCrAlY (M = Ni, Co) bond coats, Amdry 386, Amdry 9954 and oxide dispersion strengthened (ODS) Amdry 9954 (named Amdry 9954 + ODS) were investigated after annealing in three atmospheres: Ar–O2, Ar–H2O, and Ar–H2–H2O. Freestanding bond coats were investigated to avoid any influence from the substrate. Miniaturized cylindrical tensile specimens were produced by a special grinding process and then tested in a thermomechanical analyzer (TMA) within a temperature range of 900–950 °C. Grain size and phase fraction of all bond coats were investigated by EBSD before testing and no difference in microstructure was revealed due to annealing in various atmospheres. The influence of annealing in different atmospheres on the creep strength was not very pronounced for the Co-based bond coats Amdry 9954 and Amdry 9954 + ODS in the tested conditions. The ODS bond coats revealed significantly higher creep strength but a lower strain to failure than the ODS-free Amdry 9954. The Ni-based bond coat Amdry 386 showed higher creep strength than Amdry 9954 due to the higher fraction of the β-NiAl phase. Additionally, its creep properties at 900 °C were much more affected by annealing in different atmospheres. The bond coat Amdry 386 annealed in an Ar–H2O atmosphere showed a significantly lower creep rate than the bond coat annealed in Ar–O2 and Ar–H2–H2O atmospheres.
000863561 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000863561 588__ $$aDataset connected to CrossRef
000863561 7001_ $$00000-0001-7853-0368$$aNeumeier, Steffen$$b1
000863561 7001_ $$0P:(DE-Juel1)159410$$aBergholz, Jan$$b2
000863561 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, Dmitry$$b3$$ufzj
000863561 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b4$$ufzj
000863561 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b5$$ufzj
000863561 7001_ $$0P:(DE-HGF)0$$aGöken, Mathias$$b6
000863561 773__ $$0PERI:(DE-600)2662252-X$$a10.3390/met9060692$$gVol. 9, no. 6, p. 692 -$$n6$$p692 -$$tMetals$$v9$$x2075-4701$$y2019
000863561 8564_ $$uhttps://juser.fz-juelich.de/record/863561/files/metals-09-00692-v2.pdf$$yOpenAccess
000863561 8564_ $$uhttps://juser.fz-juelich.de/record/863561/files/metals-09-00692-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863561 909CO $$ooai:juser.fz-juelich.de:863561$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b3$$kFZJ
000863561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b4$$kFZJ
000863561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000863561 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000863561 9141_ $$y2019
000863561 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863561 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863561 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863561 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETALS-BASEL : 2017
000863561 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863561 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863561 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863561 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863561 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863561 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863561 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000863561 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863561 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863561 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863561 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863561 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000863561 9801_ $$aFullTexts
000863561 980__ $$ajournal
000863561 980__ $$aVDB
000863561 980__ $$aUNRESTRICTED
000863561 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863561 980__ $$aI:(DE-Juel1)IEK-2-20101013
000863561 981__ $$aI:(DE-Juel1)IMD-1-20101013
000863561 981__ $$aI:(DE-Juel1)IMD-2-20101013