Journal Article FZJ-2019-03600

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Influence of Different Annealing Atmospheres on the Mechanical Properties of Freestanding MCrAlY Bond Coats Investigated by Micro-Tensile Creep Tests

 ;  ;  ;  ;  ;  ;

2019
MDPI Basel

Metals 9(6), 692 - () [10.3390/met9060692]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The mechanical properties of low-pressure plasma sprayed (LPPS) MCrAlY (M = Ni, Co) bond coats, Amdry 386, Amdry 9954 and oxide dispersion strengthened (ODS) Amdry 9954 (named Amdry 9954 + ODS) were investigated after annealing in three atmospheres: Ar–O2, Ar–H2O, and Ar–H2–H2O. Freestanding bond coats were investigated to avoid any influence from the substrate. Miniaturized cylindrical tensile specimens were produced by a special grinding process and then tested in a thermomechanical analyzer (TMA) within a temperature range of 900–950 °C. Grain size and phase fraction of all bond coats were investigated by EBSD before testing and no difference in microstructure was revealed due to annealing in various atmospheres. The influence of annealing in different atmospheres on the creep strength was not very pronounced for the Co-based bond coats Amdry 9954 and Amdry 9954 + ODS in the tested conditions. The ODS bond coats revealed significantly higher creep strength but a lower strain to failure than the ODS-free Amdry 9954. The Ni-based bond coat Amdry 386 showed higher creep strength than Amdry 9954 due to the higher fraction of the β-NiAl phase. Additionally, its creep properties at 900 °C were much more affected by annealing in different atmospheres. The bond coat Amdry 386 annealed in an Ar–H2O atmosphere showed a significantly lower creep rate than the bond coat annealed in Ar–O2 and Ar–H2–H2O atmospheres.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
IEK > IEK-1
Publications database
Open Access

 Record created 2019-07-01, last modified 2024-07-11