000863606 001__ 863606
000863606 005__ 20240712100902.0
000863606 0247_ $$2doi$$a10.5194/acp-19-6509-2019
000863606 0247_ $$2ISSN$$a1680-7316
000863606 0247_ $$2ISSN$$a1680-7324
000863606 0247_ $$2Handle$$a2128/22823
000863606 0247_ $$2altmetric$$aaltmetric:60534299
000863606 0247_ $$2WOS$$aWOS:000468193700006
000863606 037__ $$aFZJ-2019-03618
000863606 082__ $$a550
000863606 1001_ $$0P:(DE-Juel1)156119$$aTao, Mengchu$$b0$$eCorresponding author
000863606 245__ $$aMultitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products
000863606 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000863606 3367_ $$2DRIVER$$aarticle
000863606 3367_ $$2DataCite$$aOutput Types/Journal article
000863606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568700149_18880
000863606 3367_ $$2BibTeX$$aARTICLE
000863606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863606 3367_ $$00$$2EndNote$$aJournal Article
000863606 520__ $$aStratospheric water vapor (SWV) plays important roles in the radiation budget and ozone chemistry and is a valuable tracer for understanding stratospheric transport. Meteorological reanalyses provide variables necessary for simulating this transport; however, even recent reanalyses are subject to substantial uncertainties, especially in the stratosphere. It is therefore necessary to evaluate the consistency among SWV distributions simulated using different input reanalysis products. In this study, we evaluate the representation of SWV and its variations on multiple timescales using simulations over the period 1980–2013. Our simulations are based on the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by horizontal winds and diabatic heating rates from three recent reanalyses: ERA-Interim, JRA-55 and MERRA-2. We present an intercomparison among these model results and observationally based estimates using a multiple linear regression method to study the annual cycle (AC), the quasi-biennial oscillation (QBO), and longer-term variability in monthly zonal-mean H2O mixing ratios forced by variations in the El Niño–Southern Oscillation (ENSO) and the volcanic aerosol burden. We find reasonable consistency among simulations of the distribution and variability in SWV with respect to the AC and QBO. However, the amplitudes of both signals are systematically weaker in the lower and middle stratosphere when CLaMS is driven by MERRA-2 than when it is driven by ERA-Interim or JRA-55. This difference is primarily attributable to relatively slow tropical upwelling in the lower stratosphere in simulations based on MERRA-2. Two possible contributors to the slow tropical upwelling in the lower stratosphere are suggested to be the large long-wave cloud radiative effect and the unique assimilation process in MERRA-2. The impacts of ENSO and volcanic aerosol on H2O entry variability are qualitatively consistent among the three simulations despite differences of 50 %–100 % in the magnitudes. Trends show larger discrepancies among the three simulations. CLaMS driven by ERA-Interim produces a neutral to slightly positive trend in H2O entry values over 1980–2013 (+0.01 ppmv decade$^{−1}$), while both CLaMS driven by JRA-55 and CLaMS driven by MERRA-2 produce negative trends but with significantly different magnitudes (−0.22 and −0.08 ppmv decade$^{−1}$, respectively).
000863606 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000863606 588__ $$aDataset connected to CrossRef
000863606 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b1$$ufzj
000863606 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b2$$ufzj
000863606 7001_ $$0P:(DE-Juel1)169291$$aYan, Xiaolu$$b3$$ufzj
000863606 7001_ $$00000-0001-6551-7017$$aWright, Jonathon S.$$b4
000863606 7001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou$$b5
000863606 7001_ $$0P:(DE-HGF)0$$aFueglistaler, Stephan$$b6
000863606 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000863606 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-6509-2019$$gVol. 19, no. 9, p. 6509 - 6534$$n9$$p6509 - 6534$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000863606 8564_ $$uhttps://juser.fz-juelich.de/record/863606/files/invoice_Helmholtz-PUC-2019-44%20.pdf
000863606 8564_ $$uhttps://juser.fz-juelich.de/record/863606/files/acp-19-6509-2019.pdf$$yOpenAccess
000863606 8564_ $$uhttps://juser.fz-juelich.de/record/863606/files/invoice_Helmholtz-PUC-2019-44%20.pdf?subformat=pdfa$$xpdfa
000863606 8564_ $$uhttps://juser.fz-juelich.de/record/863606/files/acp-19-6509-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863606 8767_ $$8Helmholtz-PUC-2019-44$$92019-07-01$$d2019-07-02$$eAPC$$jZahlung erfolgt$$pacp-2019-39
000863606 909CO $$ooai:juser.fz-juelich.de:863606$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000863606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156119$$aForschungszentrum Jülich$$b0$$kFZJ
000863606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b1$$kFZJ
000863606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b2$$kFZJ
000863606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169291$$aForschungszentrum Jülich$$b3$$kFZJ
000863606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b5$$kFZJ
000863606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000863606 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000863606 9141_ $$y2019
000863606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863606 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863606 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863606 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000863606 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863606 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863606 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863606 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863606 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863606 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000863606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000863606 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863606 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000863606 9801_ $$aAPC
000863606 9801_ $$aFullTexts
000863606 980__ $$ajournal
000863606 980__ $$aVDB
000863606 980__ $$aUNRESTRICTED
000863606 980__ $$aI:(DE-Juel1)IEK-7-20101013
000863606 980__ $$aAPC
000863606 981__ $$aI:(DE-Juel1)ICE-4-20101013