001     863678
005     20240313094920.0
037 _ _ |a FZJ-2019-03684
041 _ _ |a English
100 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 0
|e Corresponding author
111 2 _ |a NEST Conference 2019
|c Aas
|d 2019-06-24 - 2019-06-25
|w Norway
245 _ _ |a Connectivity Concepts for Neuronal Networks
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1569849661_21077
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a A statement like “$N_\text{s}$ source neurons and $N_\text{t}$ target neurons are connected randomly with connectionprobability $p$” may be used to describe the structure of a neuronal network model, but itsinterpretation is inherently ambiguous. A lacking detail is, for example, information on thedistribution of in- and outgoing connections, resulting in substantial differences in networkdynamics. For reproducible research, unambiguous network descriptions and correspondingalgorithmic implementations are necessary [1]. Here, we review simulation software (e.g., NEST[2]), specification languages (e.g., CSA [3]), and published network models made available by thecommunity in databases like ModelDB [4] and Open Source Brain [5]. We investigate the networkstructures computational neuroscientists use in their models and the terminology they use todescribe these models. From this, we derive a set of connectivity concepts providing modelers withguidelines to specify connectivity in a complete and concise way. Furthermore, this work aims toguide the comprehensive and efficient implementation of connection routines in simulationsoftware like NEST, thereby facilitating reproducible research on network models.$\qquad$References: $\qquad$1. Nordlie E, et al. (2009) Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol. 5(8): e1000456. doi:10.1371/journal.pcbi.1000456 $\qquad$2. Gewaltig M-O and Diesmann M (2007). NEST (NEural Simulation Tool). Scholarpedia. 2(4):1430, doi:10.4249/scholarpedia.1430 $\qquad$3. Djurfeldt M (2012) The Connection-set Algebra—A Novel Formalism for the Representation of Connectivity Structure in Neuronal Network Models. Neuroinform. 10:287–304. doi:10.1007/s12021-012-9146-1 $\qquad$4. ModelDB [https://senselab.med.yale.edu/modeldb] $\qquad$5. Gleeson P, Cantarelli M, Marin B, . . . van Albada SJ, van Geit W, R Silver RA (in press) Open Source Brain: a collaborative resource for visualizing, analyzing, simulating and developing standardized models of neurons and circuits. Neuron.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 1
|f H2020-Adhoc-2014-20
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 2
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a Brain-Scale Simulations (jinb33_20121101)
|0 G:(DE-Juel1)jinb33_20121101
|c jinb33_20121101
|x 3
|f Brain-Scale Simulations
536 _ _ |a SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 4
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|x 5
|f Advanced Computing Architectures
700 1 _ |a Kriener, Birgit
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hagen, Espen
|0 P:(DE-Juel1)164166
|b 2
700 1 _ |a Bos, Hannah
|0 P:(DE-Juel1)162131
|b 3
700 1 _ |a Plesser, Hans Ekkehard
|0 P:(DE-Juel1)169781
|b 4
|u fzj
700 1 _ |a Gewaltig, Marc-Oliver
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 6
|u fzj
700 1 _ |a Djurfeldt, Mikael
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 8
|u fzj
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 9
|u fzj
856 4 _ |u https://indico-jsc.fz-juelich.de/event/92/
909 C O |o oai:juser.fz-juelich.de:863678
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169781
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)168479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21