Poster (After Call) FZJ-2019-03684

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Connectivity Concepts for Neuronal Networks

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2019

NEST Conference 2019, AasAas, Norway, 24 Jun 2019 - 25 Jun 20192019-06-242019-06-25

Abstract: A statement like “$N_\text{s}$ source neurons and $N_\text{t}$ target neurons are connected randomly with connectionprobability $p$” may be used to describe the structure of a neuronal network model, but itsinterpretation is inherently ambiguous. A lacking detail is, for example, information on thedistribution of in- and outgoing connections, resulting in substantial differences in networkdynamics. For reproducible research, unambiguous network descriptions and correspondingalgorithmic implementations are necessary [1]. Here, we review simulation software (e.g., NEST[2]), specification languages (e.g., CSA [3]), and published network models made available by thecommunity in databases like ModelDB [4] and Open Source Brain [5]. We investigate the networkstructures computational neuroscientists use in their models and the terminology they use todescribe these models. From this, we derive a set of connectivity concepts providing modelers withguidelines to specify connectivity in a complete and concise way. Furthermore, this work aims toguide the comprehensive and efficient implementation of connection routines in simulationsoftware like NEST, thereby facilitating reproducible research on network models.$\qquad$References: $\qquad$1. Nordlie E, et al. (2009) Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol. 5(8): e1000456. doi:10.1371/journal.pcbi.1000456 $\qquad$2. Gewaltig M-O and Diesmann M (2007). NEST (NEural Simulation Tool). Scholarpedia. 2(4):1430, doi:10.4249/scholarpedia.1430 $\qquad$3. Djurfeldt M (2012) The Connection-set Algebra—A Novel Formalism for the Representation of Connectivity Structure in Neuronal Network Models. Neuroinform. 10:287–304. doi:10.1007/s12021-012-9146-1 $\qquad$4. ModelDB [https://senselab.med.yale.edu/modeldb] $\qquad$5. Gleeson P, Cantarelli M, Marin B, . . . van Albada SJ, van Geit W, R Silver RA (in press) Open Source Brain: a collaborative resource for visualizing, analyzing, simulating and developing standardized models of neurons and circuits. Neuron.


Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)
  2. HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) (720270)
  3. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)
  4. Brain-Scale Simulations (jinb33_20121101) (jinb33_20121101)
  5. SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269) (347572269)
  6. Advanced Computing Architectures (aca_20190115) (aca_20190115)

Appears in the scientific report 2019
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > INM > INM-10
Document types > Presentations > Poster
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Workflow collections > Public records
Publications database

 Record created 2019-07-04, last modified 2024-03-13


External link:
Download fulltext
Fulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)