000863851 001__ 863851
000863851 005__ 20240313103130.0
000863851 0247_ $$2doi$$a10.1016/j.neuroscience.2019.07.005
000863851 0247_ $$2ISSN$$a0306-4522
000863851 0247_ $$2ISSN$$a1873-7544
000863851 0247_ $$2Handle$$a2128/23051
000863851 0247_ $$2pmid$$apmid:31299347
000863851 0247_ $$2WOS$$aWOS:000478570500013
000863851 037__ $$aFZJ-2019-03822
000863851 082__ $$a610
000863851 1001_ $$0P:(DE-Juel1)171989$$aSukiban, Jeyathevy$$b0
000863851 245__ $$aEvaluation of Spike Sorting Algorithms: Application to Human Subthalamic Nucleus Recordings and Simulations
000863851 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000863851 3367_ $$2DRIVER$$aarticle
000863851 3367_ $$2DataCite$$aOutput Types/Journal article
000863851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1569918349_13644
000863851 3367_ $$2BibTeX$$aARTICLE
000863851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863851 3367_ $$00$$2EndNote$$aJournal Article
000863851 520__ $$aAn important prerequisite for the analysis of spike synchrony in extracellular recordings is the extraction of single-unit activity from the multi-unit signal. To identify single units, potential spikes are separated with respect to their potential neuronal origins (‘spike sorting’). However, different sorting algorithms yield inconsistent unit assignments, which seriously influences subsequent spike train analyses. We aim to identify the best sorting algorithm for subthalamic nucleus recordings of patients with Parkinson's disease (experimental data ED). Therefore, we apply various prevalent algorithms offered by the ‘Plexon Offline Sorter’ and evaluate the sorting results. Since this evaluation leaves us unsure about the best algorithm, we apply all methods again to artificial data (AD) with known ground truth. AD consists of pairs of single units with different shape similarity embedded in the background noise of the ED. The sorting evaluation depicts a significant influence of the respective methods on the single unit assignments. We find a high variability in the sortings obtained by different algorithms that increases with single units shape similarity. We also find significant differences in the resulting firing characteristics. We conclude that Valley-Seeking algorithms produce the most accurate result if the exclusion of artifacts as unsorted events is important. If the latter is less important (‘clean’ data) the K-Means algorithm is a better option. Our results strongly argue for the need of standardized validation procedures based on ground truth data. The recipe suggested here is simple enough to become a standard procedure.
000863851 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000863851 536__ $$0G:(DFG)KFO219Schwerpunkt_1510415$$aKFO 219 Schwerpunktprogramm - KFO 219: Basalganglien-Kortex-Schleifen: Mechanismen pathologischer Interaktionen und ihrer therapeutischen Modulation (G:DFG-KFO219Schwerpunkt_1510415)$$cG:(DFG)KFO219Schwerpunkt_1510415$$x1
000863851 536__ $$0G:(GEPRIS)147522227$$aDFG project 147522227 - Charakterisierung der effektiven Konnektivität motorischer Basalganglien-Kortex-Schleifen durch loklale Feldpotentiale im Nucelus Subthalamicus und EEG-Ableitungen bei Morbus Parkinson (147522227)$$c147522227$$x2
000863851 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x3
000863851 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x4
000863851 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x5
000863851 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x6
000863851 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x7
000863851 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x8
000863851 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x9
000863851 588__ $$aDataset connected to CrossRef
000863851 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b1$$eCorresponding author
000863851 7001_ $$0P:(DE-HGF)0$$aDembek, Till A.$$b2
000863851 7001_ $$0P:(DE-Juel1)166067$$aPauli, Robin$$b3
000863851 7001_ $$0P:(DE-HGF)0$$aVisser-Vandewalle, Veerle$$b4
000863851 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b5
000863851 7001_ $$0P:(DE-HGF)0$$aWeber, Immo$$b6
000863851 7001_ $$0P:(DE-HGF)0$$aTimmermann, Lars$$b7
000863851 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b8
000863851 773__ $$0PERI:(DE-600)1498423-4$$a10.1016/j.neuroscience.2019.07.005$$gp. S0306452219304750$$p168-185$$tNeuroscience$$v414$$x0306-4522$$y2019
000863851 8564_ $$uhttps://juser.fz-juelich.de/record/863851/files/Invoice_OAD0000004286%20%28002%29.pdf
000863851 8564_ $$uhttps://juser.fz-juelich.de/record/863851/files/1-s2.0-S0306452219304750-main.pdf$$yOpenAccess
000863851 8564_ $$uhttps://juser.fz-juelich.de/record/863851/files/Invoice_OAD0000004286%20%28002%29.pdf?subformat=pdfa$$xpdfa
000863851 8564_ $$uhttps://juser.fz-juelich.de/record/863851/files/1-s2.0-S0306452219304750-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863851 8767_ $$8OAD0000004286$$92019-07-15$$d2019-07-16$$eHybrid-OA$$jZahlung erfolgt$$zZahlung = Hälfte APC Rechnung geteilt
000863851 909CO $$ooai:juser.fz-juelich.de:863851$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000863851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863851 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000863851 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863851 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863851 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCIENCE : 2017
000863851 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863851 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863851 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863851 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863851 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863851 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863851 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863851 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863851 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863851 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863851 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863851 9141_ $$y2019
000863851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168479$$aForschungszentrum Jülich$$b1$$kFZJ
000863851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166067$$aForschungszentrum Jülich$$b3$$kFZJ
000863851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b5$$kFZJ
000863851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b8$$kFZJ
000863851 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000863851 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000863851 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000863851 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000863851 9801_ $$aAPC
000863851 9801_ $$aFullTexts
000863851 980__ $$ajournal
000863851 980__ $$aVDB
000863851 980__ $$aUNRESTRICTED
000863851 980__ $$aI:(DE-Juel1)INM-6-20090406
000863851 980__ $$aI:(DE-Juel1)INM-10-20170113
000863851 980__ $$aI:(DE-Juel1)IAS-6-20130828
000863851 980__ $$aAPC
000863851 981__ $$aI:(DE-Juel1)IAS-6-20130828