% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Sukiban:863851,
author = {Sukiban, Jeyathevy and Voges, Nicole and Dembek, Till A.
and Pauli, Robin and Visser-Vandewalle, Veerle and Denker,
Michael and Weber, Immo and Timmermann, Lars and Grün,
Sonja},
title = {{E}valuation of {S}pike {S}orting {A}lgorithms:
{A}pplication to {H}uman {S}ubthalamic {N}ucleus
{R}ecordings and {S}imulations},
journal = {Neuroscience},
volume = {414},
issn = {0306-4522},
address = {Amsterdam [u.a.]},
publisher = {Elsevier Science},
reportid = {FZJ-2019-03822},
pages = {168-185},
year = {2019},
abstract = {An important prerequisite for the analysis of spike
synchrony in extracellular recordings is the extraction of
single-unit activity from the multi-unit signal. To identify
single units, potential spikes are separated with respect to
their potential neuronal origins (‘spike sorting’).
However, different sorting algorithms yield inconsistent
unit assignments, which seriously influences subsequent
spike train analyses. We aim to identify the best sorting
algorithm for subthalamic nucleus recordings of patients
with Parkinson's disease (experimental data ED). Therefore,
we apply various prevalent algorithms offered by the
‘Plexon Offline Sorter’ and evaluate the sorting
results. Since this evaluation leaves us unsure about the
best algorithm, we apply all methods again to artificial
data (AD) with known ground truth. AD consists of pairs of
single units with different shape similarity embedded in the
background noise of the ED. The sorting evaluation depicts a
significant influence of the respective methods on the
single unit assignments. We find a high variability in the
sortings obtained by different algorithms that increases
with single units shape similarity. We also find significant
differences in the resulting firing characteristics. We
conclude that Valley-Seeking algorithms produce the most
accurate result if the exclusion of artifacts as unsorted
events is important. If the latter is less important
(‘clean’ data) the K-Means algorithm is a better option.
Our results strongly argue for the need of standardized
validation procedures based on ground truth data. The recipe
suggested here is simple enough to become a standard
procedure.},
cin = {INM-6 / INM-10 / IAS-6},
ddc = {610},
cid = {I:(DE-Juel1)INM-6-20090406 / I:(DE-Juel1)INM-10-20170113 /
I:(DE-Juel1)IAS-6-20130828},
pnm = {571 - Connectivity and Activity (POF3-571) / KFO 219
Schwerpunktprogramm - KFO 219:
Basalganglien-Kortex-Schleifen: Mechanismen pathologischer
Interaktionen und ihrer therapeutischen Modulation
$(G:DFG-KFO219Schwerpunkt_1510415)$ / DFG project 147522227
- Charakterisierung der effektiven Konnektivität
motorischer Basalganglien-Kortex-Schleifen durch loklale
Feldpotentiale im Nucelus Subthalamicus und EEG-Ableitungen
bei Morbus Parkinson (147522227) / DFG project 233510988 -
Mathematische Modellierung der Entstehung und Suppression
pathologischer Aktivitätszustände in den
Basalganglien-Kortex-Schleifen (233510988) / DFG project
238707842 - Kausative Mechanismen mesoskopischer
Aktivitätsmuster in der auditorischen
Kategorien-Diskrimination (238707842) / DFG project
238707842 - Kausative Mechanismen mesoskopischer
Aktivitätsmuster in der auditorischen
Kategorien-Diskrimination (238707842) / DFG project
238707842 - Kausative Mechanismen mesoskopischer
Aktivitätsmuster in der auditorischen
Kategorien-Diskrimination (238707842) / SMHB -
Supercomputing and Modelling for the Human Brain
(HGF-SMHB-2013-2017) / HBP SGA2 - Human Brain Project
Specific Grant Agreement 2 (785907) / HBP SGA1 - Human Brain
Project Specific Grant Agreement 1 (720270)},
pid = {G:(DE-HGF)POF3-571 / $G:(DFG)KFO219Schwerpunkt_1510415$ /
G:(GEPRIS)147522227 / G:(GEPRIS)233510988 /
G:(GEPRIS)238707842 / G:(GEPRIS)238707842 /
G:(GEPRIS)238707842 / G:(DE-Juel1)HGF-SMHB-2013-2017 /
G:(EU-Grant)785907 / G:(EU-Grant)720270},
typ = {PUB:(DE-HGF)16},
pubmed = {pmid:31299347},
UT = {WOS:000478570500013},
doi = {10.1016/j.neuroscience.2019.07.005},
url = {https://juser.fz-juelich.de/record/863851},
}