Home > Workflow collections > Publication Charges > Evaluation of Spike Sorting Algorithms: Application to Human Subthalamic Nucleus Recordings and Simulations > print |
001 | 863851 | ||
005 | 20240313103130.0 | ||
024 | 7 | _ | |2 doi |a 10.1016/j.neuroscience.2019.07.005 |
024 | 7 | _ | |2 ISSN |a 0306-4522 |
024 | 7 | _ | |2 ISSN |a 1873-7544 |
024 | 7 | _ | |2 Handle |a 2128/23051 |
024 | 7 | _ | |2 pmid |a pmid:31299347 |
024 | 7 | _ | |2 WOS |a WOS:000478570500013 |
037 | _ | _ | |a FZJ-2019-03822 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-Juel1)171989 |a Sukiban, Jeyathevy |b 0 |
245 | _ | _ | |a Evaluation of Spike Sorting Algorithms: Application to Human Subthalamic Nucleus Recordings and Simulations |
260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier Science |c 2019 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1569918349_13644 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a An important prerequisite for the analysis of spike synchrony in extracellular recordings is the extraction of single-unit activity from the multi-unit signal. To identify single units, potential spikes are separated with respect to their potential neuronal origins (‘spike sorting’). However, different sorting algorithms yield inconsistent unit assignments, which seriously influences subsequent spike train analyses. We aim to identify the best sorting algorithm for subthalamic nucleus recordings of patients with Parkinson's disease (experimental data ED). Therefore, we apply various prevalent algorithms offered by the ‘Plexon Offline Sorter’ and evaluate the sorting results. Since this evaluation leaves us unsure about the best algorithm, we apply all methods again to artificial data (AD) with known ground truth. AD consists of pairs of single units with different shape similarity embedded in the background noise of the ED. The sorting evaluation depicts a significant influence of the respective methods on the single unit assignments. We find a high variability in the sortings obtained by different algorithms that increases with single units shape similarity. We also find significant differences in the resulting firing characteristics. We conclude that Valley-Seeking algorithms produce the most accurate result if the exclusion of artifacts as unsorted events is important. If the latter is less important (‘clean’ data) the K-Means algorithm is a better option. Our results strongly argue for the need of standardized validation procedures based on ground truth data. The recipe suggested here is simple enough to become a standard procedure. |
536 | _ | _ | |a 571 - Connectivity and Activity (POF3-571) |0 G:(DE-HGF)POF3-571 |c POF3-571 |x 0 |f POF III |
536 | _ | _ | |a KFO 219 Schwerpunktprogramm - KFO 219: Basalganglien-Kortex-Schleifen: Mechanismen pathologischer Interaktionen und ihrer therapeutischen Modulation (G:DFG-KFO219Schwerpunkt_1510415) |0 G:(DFG)KFO219Schwerpunkt_1510415 |c G:(DFG)KFO219Schwerpunkt_1510415 |x 1 |
536 | _ | _ | |a DFG project 147522227 - Charakterisierung der effektiven Konnektivität motorischer Basalganglien-Kortex-Schleifen durch loklale Feldpotentiale im Nucelus Subthalamicus und EEG-Ableitungen bei Morbus Parkinson (147522227) |0 G:(GEPRIS)147522227 |c 147522227 |x 2 |
536 | _ | _ | |a DFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988) |0 G:(GEPRIS)233510988 |c 233510988 |x 3 |
536 | _ | _ | |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842) |0 G:(GEPRIS)238707842 |c 238707842 |x 4 |
536 | _ | _ | |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842) |0 G:(GEPRIS)238707842 |c 238707842 |x 5 |
536 | _ | _ | |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842) |0 G:(GEPRIS)238707842 |c 238707842 |x 6 |
536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |x 7 |f SMHB |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |x 8 |f H2020-SGA-FETFLAG-HBP-2017 |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |x 9 |f H2020-Adhoc-2014-20 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-Juel1)168479 |a Voges, Nicole |b 1 |e Corresponding author |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Dembek, Till A. |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)166067 |a Pauli, Robin |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Visser-Vandewalle, Veerle |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)144807 |a Denker, Michael |b 5 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Weber, Immo |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Timmermann, Lars |b 7 |
700 | 1 | _ | |0 P:(DE-Juel1)144168 |a Grün, Sonja |b 8 |
773 | _ | _ | |0 PERI:(DE-600)1498423-4 |a 10.1016/j.neuroscience.2019.07.005 |g p. S0306452219304750 |p 168-185 |t Neuroscience |v 414 |x 0306-4522 |y 2019 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/863851/files/Invoice_OAD0000004286%20%28002%29.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/863851/files/1-s2.0-S0306452219304750-main.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/863851/files/Invoice_OAD0000004286%20%28002%29.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/863851/files/1-s2.0-S0306452219304750-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:863851 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)168479 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)166067 |a Forschungszentrum Jülich |b 3 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144807 |a Forschungszentrum Jülich |b 5 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144168 |a Forschungszentrum Jülich |b 8 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |3 G:(DE-HGF)POF3 |4 G:(DE-HGF)POF |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 0 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NEUROSCIENCE : 2017 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 2 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|