001     863851
005     20240313103130.0
024 7 _ |2 doi
|a 10.1016/j.neuroscience.2019.07.005
024 7 _ |2 ISSN
|a 0306-4522
024 7 _ |2 ISSN
|a 1873-7544
024 7 _ |2 Handle
|a 2128/23051
024 7 _ |2 pmid
|a pmid:31299347
024 7 _ |2 WOS
|a WOS:000478570500013
037 _ _ |a FZJ-2019-03822
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)171989
|a Sukiban, Jeyathevy
|b 0
245 _ _ |a Evaluation of Spike Sorting Algorithms: Application to Human Subthalamic Nucleus Recordings and Simulations
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1569918349_13644
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a An important prerequisite for the analysis of spike synchrony in extracellular recordings is the extraction of single-unit activity from the multi-unit signal. To identify single units, potential spikes are separated with respect to their potential neuronal origins (‘spike sorting’). However, different sorting algorithms yield inconsistent unit assignments, which seriously influences subsequent spike train analyses. We aim to identify the best sorting algorithm for subthalamic nucleus recordings of patients with Parkinson's disease (experimental data ED). Therefore, we apply various prevalent algorithms offered by the ‘Plexon Offline Sorter’ and evaluate the sorting results. Since this evaluation leaves us unsure about the best algorithm, we apply all methods again to artificial data (AD) with known ground truth. AD consists of pairs of single units with different shape similarity embedded in the background noise of the ED. The sorting evaluation depicts a significant influence of the respective methods on the single unit assignments. We find a high variability in the sortings obtained by different algorithms that increases with single units shape similarity. We also find significant differences in the resulting firing characteristics. We conclude that Valley-Seeking algorithms produce the most accurate result if the exclusion of artifacts as unsorted events is important. If the latter is less important (‘clean’ data) the K-Means algorithm is a better option. Our results strongly argue for the need of standardized validation procedures based on ground truth data. The recipe suggested here is simple enough to become a standard procedure.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a KFO 219 Schwerpunktprogramm - KFO 219: Basalganglien-Kortex-Schleifen: Mechanismen pathologischer Interaktionen und ihrer therapeutischen Modulation (G:DFG-KFO219Schwerpunkt_1510415)
|0 G:(DFG)KFO219Schwerpunkt_1510415
|c G:(DFG)KFO219Schwerpunkt_1510415
|x 1
536 _ _ |a DFG project 147522227 - Charakterisierung der effektiven Konnektivität motorischer Basalganglien-Kortex-Schleifen durch loklale Feldpotentiale im Nucelus Subthalamicus und EEG-Ableitungen bei Morbus Parkinson (147522227)
|0 G:(GEPRIS)147522227
|c 147522227
|x 2
536 _ _ |a DFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)
|0 G:(GEPRIS)233510988
|c 233510988
|x 3
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 4
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 5
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 6
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|x 7
|f SMHB
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 8
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 9
|f H2020-Adhoc-2014-20
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)168479
|a Voges, Nicole
|b 1
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Dembek, Till A.
|b 2
700 1 _ |0 P:(DE-Juel1)166067
|a Pauli, Robin
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Visser-Vandewalle, Veerle
|b 4
700 1 _ |0 P:(DE-Juel1)144807
|a Denker, Michael
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Weber, Immo
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Timmermann, Lars
|b 7
700 1 _ |0 P:(DE-Juel1)144168
|a Grün, Sonja
|b 8
773 _ _ |0 PERI:(DE-600)1498423-4
|a 10.1016/j.neuroscience.2019.07.005
|g p. S0306452219304750
|p 168-185
|t Neuroscience
|v 414
|x 0306-4522
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/863851/files/Invoice_OAD0000004286%20%28002%29.pdf
856 4 _ |u https://juser.fz-juelich.de/record/863851/files/1-s2.0-S0306452219304750-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/863851/files/Invoice_OAD0000004286%20%28002%29.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/863851/files/1-s2.0-S0306452219304750-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:863851
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168479
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166067
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144807
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144168
|a Forschungszentrum Jülich
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NEUROSCIENCE : 2017
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21