TY  - JOUR
AU  - Gehring, Markus
AU  - Tempel, Hermann
AU  - Merlen, Alexandre
AU  - Schierholz, Roland
AU  - Eichel, Rüdiger-A.
AU  - Kungl, Hans
TI  - Carbonisation temperature dependence of electrochemical activity of nitrogen-doped carbon fibres from electrospinning as air-cathodes for aqueous-alkaline metal–air batteries
JO  - RSC Advances
VL  - 9
IS  - 47
SN  - 2046-2069
CY  - London
PB  - RSC Publishing
M1  - FZJ-2019-04046
SP  - 27231 - 27241
PY  - 2019
AB  - Poly-acrylonitrile (PAN)-derived carbon fibres were characterised as air electrode frameworks for aqueous-alkaline metal–air batteries, focussing on the influence of the carbonisation temperature on the structure and electrochemical properties. Elemental composition, (atomic) structure, electrical conductivity, and electrochemical performance related to the oxygen reduction were investigated for electrodes carbonised in the range from 300 °C to 1400 °C. Chemical and structural properties were analysed using elemental analysis, XPS, SEM, and Raman spectroscopy; electrical conductivities of the fibre networks were examined by four-point probe measurements. Electrochemical properties were evaluated using linear sweep voltammetry in 6 M KOH by the open circuit potentials, the cathodic current densities at given overpotentials, and required overpotentials at given current densities. The highest current density was obtained from fibres carbonised at 850 °C. The connection between the fibre characteristics and electrochemical properties are discussed, highlighting the importance of the nitrogen bonding state. The results provide a base for thedevelopment of high performance air electrodes.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000487054800011
DO  - DOI:10.1039/C9RA03805A
UR  - https://juser.fz-juelich.de/record/864208
ER  -