000864274 001__ 864274
000864274 005__ 20210130002504.0
000864274 0247_ $$2doi$$a10.15252/embr.201948191
000864274 0247_ $$2ISSN$$a1469-221X
000864274 0247_ $$2ISSN$$a1469-3178
000864274 0247_ $$2Handle$$a2128/22560
000864274 0247_ $$2altmetric$$aaltmetric:64605712
000864274 0247_ $$2pmid$$apmid:31379073
000864274 0247_ $$2WOS$$aWOS:000478845800001
000864274 037__ $$aFZJ-2019-04091
000864274 082__ $$a570
000864274 1001_ $$0P:(DE-HGF)0$$aKater, Lukas$$b0
000864274 245__ $$aPartially inserted nascent chain unzips the lateral gate of the Sec translocon
000864274 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2019
000864274 3367_ $$2DRIVER$$aarticle
000864274 3367_ $$2DataCite$$aOutput Types/Journal article
000864274 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570451032_2024
000864274 3367_ $$2BibTeX$$aARTICLE
000864274 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000864274 3367_ $$00$$2EndNote$$aJournal Article
000864274 520__ $$aThe Sec translocon provides the lipid bilayer entry for ribosome‐bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo‐electron microscopy‐based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α‐helices 2b, 7, and 8 tilt within the membrane core to “unzip” the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α‐helices of SecE subunit modulate the lateral gate conformation. Site‐specific cross‐linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
000864274 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000864274 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000864274 588__ $$aDataset connected to CrossRef
000864274 7001_ $$0P:(DE-Juel1)172887$$aFrieg, Benedikt$$b1
000864274 7001_ $$0P:(DE-HGF)0$$aBerninghausen, Otto$$b2
000864274 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b3$$eCorresponding author
000864274 7001_ $$00000-0003-4291-3898$$aBeckmann, Roland$$b4$$eCorresponding author
000864274 7001_ $$00000-0001-9117-752X$$aKedrov, Alexej$$b5$$eCorresponding author
000864274 773__ $$0PERI:(DE-600)2025376-X$$a10.15252/embr.201948191$$pe48191$$tEMBO reports$$v20$$x1469-3178$$y2019
000864274 8564_ $$uhttps://juser.fz-juelich.de/record/864274/files/embr.201948191.pdf$$yOpenAccess
000864274 8564_ $$uhttps://juser.fz-juelich.de/record/864274/files/embr.201948191.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000864274 909CO $$ooai:juser.fz-juelich.de:864274$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000864274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172887$$aForschungszentrum Jülich$$b1$$kFZJ
000864274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b3$$kFZJ
000864274 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000864274 9141_ $$y2019
000864274 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000864274 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000864274 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000864274 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEMBO REP : 2017
000864274 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000864274 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000864274 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000864274 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000864274 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEMBO REP : 2017
000864274 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000864274 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000864274 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000864274 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000864274 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000864274 920__ $$lyes
000864274 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000864274 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000864274 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000864274 9801_ $$aFullTexts
000864274 980__ $$ajournal
000864274 980__ $$aVDB
000864274 980__ $$aI:(DE-Juel1)ICS-6-20110106
000864274 980__ $$aI:(DE-Juel1)JSC-20090406
000864274 980__ $$aI:(DE-Juel1)NIC-20090406
000864274 980__ $$aUNRESTRICTED
000864274 981__ $$aI:(DE-Juel1)IBI-7-20200312