Journal Article FZJ-2019-04149

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Soil NO3− level and O2 availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil

 ;  ;  ;  ;  ;  ;

2019
Elsevier Science Amsterdam [u.a.]

Soil biology & biochemistry 132, 165 - 173 () [10.1016/j.soilbio.2019.02.009]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Liming of acidic soils has been suggested as a strategy to enhance N2O reduction to N2 during heterotrophic denitrification, and mitigate N2O emission from N fertilised soils. However, the mechanisms involved and possible interactions of key soil parameters (NO3− and O2) still need to be clarified. To explore to what extent soil pH controls N2O emissions and the associated N2O/(N2O + N2) product ratio in an acidic sandy soil, we set-up three sequential incubation experiments using an unlimed control (pH 4.1) and a limed soil (pH 6.9) collected from a 50-year liming experiment. Interactions between different NO3− concentrations, N forms (ammonium- and nitrate) and oxygen levels (oxic and anoxic) on the liming effect of N2O emission and reduction were tested in these two sandy soils via direct N2 and N2O measurements.Our results showed 50-year liming caused a significant increase in denitrification and soil respiration rate of the acidic sandy soil. High concentrations of NO3− in soil (>10 mM N in soil solution, equivalent to 44.9 mg N kg−1 soil) almost completely inhibited N2O reduction to N2 (>90%) regardless of the soil pH value. With decreasing NO3− application rate, N2O reduction rate increased in both soils with the effect being more pronounced in the limed soil. Complete N2O reduction to N2 in the low pH sandy soil was also observed when soil NO3− concentration decreased below 0.2 mM NO3−. Furthermore, liming evidently increased both N2O emissions and the N2O/(N2+N2O) product ratio under oxic conditions when supplied with ammonium-based fertiliser, possibly due to the coupled impact of stimulated nitrification and denitrification.Overall, our data suggest that long-term liming has the potential to both increase and decrease N2O emissions, depending on the soil NO3− level, with high soil NO3− levels overriding the assumed direct pH effect on N2O/(N2+N2O) product ratio.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Publications database

 Record created 2019-08-09, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)