001     864413
005     20210130002547.0
024 7 _ |a 10.1002/hbm.24746
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/23169
|2 Handle
024 7 _ |a altmetric:64585096
|2 altmetric
024 7 _ |a pmid:31379049
|2 pmid
024 7 _ |a WOS:000478841400001
|2 WOS
037 _ _ |a FZJ-2019-04197
082 _ _ |a 610
100 1 _ |a Tahmasian, Masoud
|0 0000-0003-3999-3807
|b 0
|e Corresponding author
245 _ _ |a Practical recommendations to conduct a neuroimaging meta‐analysis for neuropsychiatric disorders
260 _ _ |a New York, NY
|c 2019
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579682682_10709
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a AAS was not financially founded for this project. S.B.E. is supported by the Deutsche Forschungsgemeinschaft (EI 816/11‐1), the National Institute of Mental Health (R01‐MH074457), the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” and the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 7202070 (HBP SGA1) and under grant agreement no. 785907 (HBP SGA2).
520 _ _ |a Over the past decades, neuroimaging has become widely used to investigate structural and functional brain abnormality in neuropsychiatric disorders. The results of individual neuroimaging studies, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. To consolidate the emergent findings toward clinically useful insight, meta-analyses have been developed to integrate the results of studies and identify areas that are consistently involved in pathophysiology of particular neuropsychiatric disorders. However, it should be considered that the results of meta-analyses could also be divergent due to heterogeneity in search strategy, selection criteria, imaging modalities, behavioral tasks, number of experiments, data organization methods, and statistical analysis with different multiple comparison thresholds. Following an introduction to the problem and the concepts of quantitative summaries of neuroimaging findings, we propose practical recommendations for clinicians and researchers for conducting transparent and methodologically sound neuroimaging meta-analyses. This should help to consolidate the search for convergent regional brain abnormality in neuropsychiatric disorders.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sepehry, Amir A.
|0 0000-0002-6055-4457
|b 1
700 1 _ |a Samea, Fateme
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Khodadadifar, Tina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Soltaninejad, Zahra
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Javaheripour, Nooshin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Khazaie, Habibolah
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zarei, Mojtaba
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 8
|u fzj
700 1 _ |a Eickhoff, Claudia R.
|0 P:(DE-Juel1)174483
|b 9
|u fzj
773 _ _ |a 10.1002/hbm.24746
|g p. hbm.24746
|0 PERI:(DE-600)1492703-2
|n 17
|p 5142-5154
|t Human brain mapping
|v 40
|y 2019
|x 1097-0193
856 4 _ |u https://juser.fz-juelich.de/record/864413/files/Tahmasian_et_al-2019-Human_Brain_Mapping.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/864413/files/Tahmasian_CBMA_2019_preprint.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/864413/files/Tahmasian_CBMA_2019_preprint.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/864413/files/Tahmasian_et_al-2019-Human_Brain_Mapping.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:864413
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174483
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21