Journal Article FZJ-2019-04267

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Does slow and steady win the race? Root growth dynamics of Arabidopsis halleri ecotypes in soils with varying trace metal element contamination

 ;  ;  ;  ;  ;

2019
Elsevier Science Amsterdam [u.a.]

Environmental and experimental botany 167, 103862 - () [10.1016/j.envexpbot.2019.103862]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Hyperaccumulating plants possess complex traits, allowing them to thrive in soils with high concentrations of trace metal elements (TME). Accordingly, their TME hypertolerance and hyperaccumulation capacities have been intensely studied from physiological, evolutionary, and ecological perspectives. Little is known, however, about their root system development in TME enriched vs natural soils. We assessed temporal and quantitative changes in root systems of the model species Arabidopsis halleri, using a novel combination of root phenotyping in rhizoboxes and multitemporal digital imaging. We continuously monitored root growth of two non-metallicolous and two metallicolous populations in different substrate treatments, including homogeneous and horizontal layer applications of metalliferous and non-metalliferous soils. Non-metallicolous plants on non-metalliferous soils produced deep-reaching and wide roots, whereas metallicolous plants on metalliferous soil had smaller roots. This pattern was reversed when transplanting seedlings to foreign substrates, indicating that environment rather than ecotype determines root growth in A. halleri. Dampened root development in metalliferous and favored root proliferation in non-metalliferous soils indicate cost of tolerance and TME foraging, respectively. Importantly, root propagation into metalliferous soil was strongly promoted by a non-metalliferous “capping” layer that facilitated initial plant development. Hence, growing on non-polluted substrate in the early stage provides plants with a robust and optimal root system that facilitates seedling establishment and subsequent development under TME enriched conditions. These findings improve our understanding of plant performance in metalliferous environments and can help refine management practices for the sustainable reclamation of degraded lands.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database

 Record created 2019-08-15, last modified 2021-01-30



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)