001     864649
005     20220930130217.0
024 7 _ |a 10.1038/s41467-019-11320-8
|2 doi
024 7 _ |a 2128/23868
|2 Handle
024 7 _ |a altmetric:65248678
|2 altmetric
024 7 _ |a pmid:31434882
|2 pmid
024 7 _ |a WOS:000482004000006
|2 WOS
037 _ _ |a FZJ-2019-04351
082 _ _ |a 500
100 1 _ |a Röder, Christine
|0 P:(DE-Juel1)174309
|b 0
245 _ _ |a Atomic structure of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy
260 _ _ |a [London]
|c 2019
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579096431_5769
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High resolution structural information on amyloid fibrils is crucial for the understanding of their formation mechanisms and for the rational design of amyloid inhibitors in the context of protein misfolding diseases. The Src-homology 3 domain of phosphatidyl-inositol-3-kinase (PI3K-SH3) is a model amyloid system that plays a pivotal role in our basic understanding of protein misfolding and aggregation. Here, we present the atomic model of the PI3K-SH3 amyloid fibril with a resolution determined to 3.4 Å by cryo-electron microscopy (cryo-EM). The fibril is composed of two intertwined protofilaments that create an interface spanning 13 residues from each monomer. The model comprises residues 1–77 out of 86 amino acids in total, with the missing residues located in the highly flexible C-terminus. The fibril structure allows us to rationalise the effects of chemically conservative point mutations as well as of the previously reported sequence perturbations on PI3K-SH3 fibril formation and growth.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vettore, Nicola
|0 0000-0002-1776-220X
|b 1
700 1 _ |a Mangels, Lena N.
|0 P:(DE-Juel1)178026
|b 2
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 3
700 1 _ |a Ravelli, Raimond B. G.
|0 0000-0001-6056-5888
|b 4
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 5
700 1 _ |a Hoyer, Wolfgang
|0 P:(DE-Juel1)166306
|b 6
700 1 _ |a Buell, Alexander K.
|0 0000-0003-1161-3622
|b 7
|e Corresponding author
700 1 _ |a Schröder, Gunnar
|0 P:(DE-Juel1)132018
|b 8
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41467-019-11320-8
|g Vol. 10, no. 1, p. 3754
|0 PERI:(DE-600)2553671-0
|n 1
|p 3754
|t Nature Communications
|v 10
|y 2019
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/864649/files/30038661670009343683INVOIC2676150799001.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/864649/files/30038661670009343683INVOIC2676150799001.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864649/files/Atomic%20structure%20of%20PI3-kinase%20SH3%20amyloid%20fibrils%20by%20cryo-electron%20microscopy.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864649/files/Atomic%20structure%20of%20PI3-kinase%20SH3%20amyloid%20fibrils%20by%20cryo-electron%20microscopy.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864649
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174309
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178026
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132018
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21