TY  - JOUR
AU  - Fadnavis, Suvarna
AU  - Müller, Rolf
AU  - Kalita, Gayatry
AU  - Rowlinson, Matthew
AU  - Rap, Alexandru
AU  - Li, Jui-Lin Frank
AU  - Gasparini, Blaž
AU  - Laakso, Anton
TI  - The impact of recent changes in Asian anthropogenic emissions of SO<sub>2</sub> on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes
JO  - Atmospheric chemistry and physics
VL  - 19
IS  - 15
SN  - 1680-7324
CY  - Katlenburg-Lindau
PB  - EGU
M1  - FZJ-2019-04404
SP  - 9989 - 10008
PY  - 2019
AB  - Convective transport plays a key role in aerosol enhancement in the upper troposphere and lower stratosphere (UTLS) over the Asian monsoon region where low-level convective instability persists throughout the year. We use the state-of-the-art ECHAM6–HAMMOZ global chemistry–climate model to investigate the seasonal transport of anthropogenic Asian sulfate aerosols and their impact on the UTLS. Sensitivity simulations for SO2 emission perturbation over India (48 % increase) and China (70 % decrease) are performed based on the Ozone Monitoring Instrument (OMI) satellite-observed trend, rising over India by ∼4.8 % per year and decreasing over China by ∼7.0 % per year during 2006–2017. The enhanced Indian emissions result in an increase in aerosol optical depth (AOD) loading in the UTLS by 0.61 to 4.17 % over India. These aerosols are transported to the Arctic during all seasons by the lower branch of the Brewer–Dobson circulation enhancing AOD by 0.017 % to 4.8 %. Interestingly, a reduction in SO2 emission over China inhibits the transport of Indian sulfate aerosols to the Arctic in summer-monsoon and post-monsoon seasons due to subsidence over northern India. The region of sulfate aerosol enhancement shows significant warming in the UTLS over northern India, south China (0.2±0.15 to 0.8±0.72 K) and the Arctic (∼1±0.62 to 1.6±1.07 K). The estimated seasonal mean direct radiative forcing at the top of the atmosphere (TOA) induced by the increase in Indian SO2 emission is −0.2 to −1.5 W m−2 over northern India. The Chinese SO2 emission reduction leads to a positive radiative forcing of ∼0.6 to 6 W m−2 over China. The decrease in vertical velocity and the associated enhanced stability of the upper troposphere in response to increased Indian SO2 emissions will likely decrease rainfall over India.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000480315800002
DO  - DOI:10.5194/acp-19-9989-2019
UR  - https://juser.fz-juelich.de/record/864733
ER  -