Abstract FZJ-2019-04523

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Differentiation of treatment-related changes from tumor progression: A direct comparison between dynamic FET PET and ADC values obtained from DWI MRI

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019

Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin 2019, BremenBremen, Germany, 3 Apr 2019 - 6 Apr 20192019-04-032019-04-06

Abstract: V29Differentiation of treatment-related changes from high-grade glioma progression: A direct comparison between FET PET and ADC values obtained by DWI MRIJ. Werner1, G. Stoffels2, T. Lichtenstein3, J. Borggrefe3, G. Ceccon1, N. J. Shah2, G. R. Fink1, K. J. Langen2, C. Kabbasch3, N. Galldiks11University Hospital Cologne, Dept. of Neurology, Cologne; 2Research Center Jülich, Inst. of Neuroscience and Medicine (INM-4), Jülich; 3University Hospital Cologne, Dept. of Neuroradiology, CologneZiel/Aim:Following brain cancer treatment, the capacity of anatomical MRI to differentiate neoplastic tissue from treatment-related changes such as pseudoprogression is limited. The aim of this study was to compare apparent diffusion coefficient (ADC) values obtained by diffusion-weighted MRI (DWI) with static parameters of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation of treatment-related changes from tumor progression.Methodik/Methods:Forty-eight pretreated high-grade glioma patients (mean age, 50±15 years) with anatomical MRI findings suspicious for tumor progression (median time after completion of last treatment, 16 weeks) were additionally investigated using DWI MRI and FET PET. Maximum and mean tumor-to-brain ratios (TBRmax/mean) of FET uptake were determined (20-40 minutes post-injection). Regions-of-Interest analyses were performed concerning the enhancing lesion on ADC maps calculated from DWI MRI. Diagnoses were confirmed neuropathologically (21%; 10 patients) or clinico-radiologically (79%; 38 patients). Diagnostic performances of TBRs and ADC values for the correct differentiation were evaluated each alone using receiver-operating-characteristic analyses, or the Fisher Exact test for a combinational approach.Ergebnisse/Results:Ten of 48 patients had treatment-related changes (21%). The diagnostic performance of FET PET was clearly higher (threshold TBRmean, 1.95; sensitivity, 100%; specificity, 79%; accuracy, 83%; AUC 0.89±0.05; P-3 mm2/s; sensitivity, 60%; specificity; 79%; accuracy, 75%; AUC 0.73±0.09; P=0.05). The combination of both imaging parameters did not increase the accuracy (64%; P=0.144).Schlussfolgerungen/Conclusions:Static FET PET seems to add valuable clinical information regarding the differentiation of early treatment-related changes from tumor progression and outperforms ADC values for this highly relevant clinical question.


Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2019
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Abstracts
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Publications database

 Record created 2019-09-03, last modified 2021-01-30


External link:
Download fulltext
Fulltext
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)