000865025 001__ 865025
000865025 005__ 20240610120343.0
000865025 0247_ $$2doi$$a10.1016/j.jtbi.2018.11.025
000865025 0247_ $$2ISSN$$a0022-5193
000865025 0247_ $$2ISSN$$a1095-8541
000865025 0247_ $$2Handle$$a2128/22699
000865025 0247_ $$2pmid$$apmid:30496746
000865025 0247_ $$2WOS$$aWOS:000455972600031
000865025 037__ $$aFZJ-2019-04590
000865025 082__ $$a570
000865025 1001_ $$0P:(DE-HGF)0$$aBelitsky, V.$$b0
000865025 245__ $$aRNA polymerase interactions and elongation rate
000865025 260__ $$aAmsterdam$$bElsevier Ltd.$$c2019
000865025 3367_ $$2DRIVER$$aarticle
000865025 3367_ $$2DataCite$$aOutput Types/Journal article
000865025 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568026172_22202
000865025 3367_ $$2BibTeX$$aARTICLE
000865025 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865025 3367_ $$00$$2EndNote$$aJournal Article
000865025 520__ $$aWe show that non-steric molecular interactions between RNA polymerase (RNAP) motors that move simultaneously on the same DNA track determine strongly the kinetics of transcription elongation. With a focus on the role of collisions and cooperation, we introduce a stochastic model that allows for the exact analytical computation of the stationary properties of transcription elongation as a function of RNAP density, their interaction strength, nucleoside triphosphate concentration, and rate of pyrophosphate release. Cooperative pushing, i.e., an enhancement of the average RNAP velocity and elongation rate, arises due to stochastic pushing which cannot be explained by steric hindrance alone. The cooperative effect requires a molecular repulsion in excess of a critical strength and disappears beyond a critical RNAP density, above which jamming due to collisions takes over. For strong repulsion and at the same time strong stochastic blocking, cooperative pushing at low RNAP densities is suppressed, but a reentrance regime at higher densities appears.
000865025 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000865025 588__ $$aDataset connected to CrossRef
000865025 7001_ $$0P:(DE-Juel1)130966$$aSchütz, G. M.$$b1$$eCorresponding author$$ufzj
000865025 773__ $$0PERI:(DE-600)1470953-3$$a10.1016/j.jtbi.2018.11.025$$gVol. 462, p. 370 - 380$$p370-380$$tJournal of theoretical biology$$v462$$x0022-5193$$y2019
000865025 8564_ $$uhttps://juser.fz-juelich.de/record/865025/files/1810.00925.pdf$$yPublished on 2018-11-27. Available in OpenAccess from 2019-11-27.
000865025 8564_ $$uhttps://juser.fz-juelich.de/record/865025/files/1810.00925.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-27. Available in OpenAccess from 2019-11-27.
000865025 909CO $$ooai:juser.fz-juelich.de:865025$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000865025 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130966$$aForschungszentrum Jülich$$b1$$kFZJ
000865025 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000865025 9141_ $$y2019
000865025 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865025 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000865025 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865025 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000865025 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000865025 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THEOR BIOL : 2017
000865025 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000865025 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865025 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865025 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865025 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865025 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865025 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865025 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865025 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865025 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865025 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865025 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000865025 9801_ $$aFullTexts
000865025 980__ $$ajournal
000865025 980__ $$aVDB
000865025 980__ $$aUNRESTRICTED
000865025 980__ $$aI:(DE-Juel1)ICS-2-20110106
000865025 981__ $$aI:(DE-Juel1)IBI-5-20200312
000865025 981__ $$aI:(DE-Juel1)IAS-2-20090406