001     865028
005     20240711113913.0
024 7 _ |a 10.1088/1361-6595/ab3774
|2 doi
024 7 _ |a 0963-0252
|2 ISSN
024 7 _ |a 1361-6595
|2 ISSN
024 7 _ |a 2128/23121
|2 Handle
024 7 _ |a WOS:000488012000001
|2 WOS
037 _ _ |a FZJ-2019-04593
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Kotov, Vladislav
|0 P:(DE-Juel1)6121
|b 0
|e Corresponding author
245 _ _ |a Plug flow reactor model of the plasma chemical conversion of CO2
260 _ _ |a Bristol
|c 2019
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571390041_14597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A 1D plug flow model suitable for describing the CO2 conversion into CO in microwave plasma reactors is proposed. The model is applied together with the Antwerp data set for the CO2 reaction kinetics to calculate parameter scans for a realistic experimental set up. The energy re-distribution pathways in the model calculations are analyzed. The analysis shows that despite the input power is initially deposited mainly into vibrational states the fast vibrational-translational (VT) transfer leads to dissociation of CO2 predominantly via the thermal quenching mechanism. Solutions with mitigated VT-losses can be obtained by increasing the specific input power - power per unit volume. In this regime the energy efficiency starts to be constrained by reverse processes.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Koelman, Peter
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1088/1361-6595/ab3774
|0 PERI:(DE-600)2004012-X
|n 9
|p 095002
|t Plasma sources science and technology
|v 28
|y 2019
|x 1361-6595
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865028/files/Kotov_2019_Plasma_Sources_Sci._Technol._28_095002.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865028/files/Kotov_2019_Plasma_Sources_Sci._Technol._28_095002.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865028
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)6121
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA SOURCES SCI T : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21