000865071 001__ 865071
000865071 005__ 20240709094408.0
000865071 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2019.06.045
000865071 0247_ $$2ISSN$$a0267-3762
000865071 0247_ $$2ISSN$$a1878-2892
000865071 0247_ $$2Handle$$a2128/22735
000865071 0247_ $$2WOS$$aWOS:000487569500048
000865071 037__ $$aFZJ-2019-04633
000865071 041__ $$aEnglish
000865071 082__ $$a660
000865071 1001_ $$0P:(DE-Juel1)168104$$aLiu, Yang$$b0
000865071 245__ $$aThermochemical stability of Fe- and Co-functionalized perovskite-type SrTiO3 oxygen transport membrane materials in syngas conditions
000865071 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000865071 3367_ $$2DRIVER$$aarticle
000865071 3367_ $$2DataCite$$aOutput Types/Journal article
000865071 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568268893_2892
000865071 3367_ $$2BibTeX$$aARTICLE
000865071 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865071 3367_ $$00$$2EndNote$$aJournal Article
000865071 520__ $$aThe materials typically used for oxygen transport membranes, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) tend to decompose due to their low thermochemical stability under reducing atmosphere. Fe- and Co-doped SrTiO3 (SrTi1-x-yCoxFeyO3-δ, x + y ≤ 0.35) (STCF) materials showing an oxygen transport comparable to LSCF have great potential for application in ion-transport-devices. In this study, the thermochemical stability of pure perovskite-structured STCF was investigated after annealing in a syngas atmosphere at 600–900 °C. The phase composition of the materials after annealing was characterized by means of X-ray diffraction (XRD). The thermodynamic activities of SrO, FeO, and CoO in the STCF materials were evaluated using Knudsen effusion mass spectrometry (KEMS). Co-doped SrTiO3 (STC) materials were not stable after annealing in the syngas atmosphere above 5 mol% Co-substitution. Ruddlesden-Popper-like phases and SrCO3 were detected after annealing at 600 °C. In contrast, Fe substitution (STF) showed good stability after annealing in syngas upto 35 mol% substitution.
000865071 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000865071 588__ $$aDataset connected to CrossRef
000865071 7001_ $$0P:(DE-Juel1)176871$$aMotalov, Vladimir$$b1
000865071 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b2$$eCorresponding author
000865071 7001_ $$0P:(DE-Juel1)159377$$aSergeev, Dmitry$$b3$$ufzj
000865071 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b4$$ufzj
000865071 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b5$$ufzj
000865071 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000865071 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2019.06.045$$gVol. 39, no. 15, p. 4874 - 4881$$n15$$p4874 - 4881$$tJournal of the European Ceramic Society$$v39$$x0955-2219$$y2019
000865071 8564_ $$uhttps://juser.fz-juelich.de/record/865071/files/2019%20Yang%20Thermochemical%20stability%20of%20STCF%20manuscript-oa.pdf$$yPublished on 2019-06-25. Available in OpenAccess from 2021-06-25.
000865071 8564_ $$uhttps://juser.fz-juelich.de/record/865071/files/2019%20Yang%20Thermochemical%20stability%20of%20STCF%20manuscript-oa.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-06-25. Available in OpenAccess from 2021-06-25.
000865071 909CO $$ooai:juser.fz-juelich.de:865071$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b2$$kFZJ
000865071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b3$$kFZJ
000865071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b4$$kFZJ
000865071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b5$$kFZJ
000865071 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000865071 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000865071 9141_ $$y2019
000865071 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865071 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865071 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865071 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000865071 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2017
000865071 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865071 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865071 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865071 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865071 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865071 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865071 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865071 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865071 920__ $$lyes
000865071 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000865071 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000865071 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x2
000865071 9801_ $$aFullTexts
000865071 980__ $$ajournal
000865071 980__ $$aVDB
000865071 980__ $$aUNRESTRICTED
000865071 980__ $$aI:(DE-Juel1)IEK-1-20101013
000865071 980__ $$aI:(DE-82)080011_20140620
000865071 980__ $$aI:(DE-Juel1)IEK-2-20101013
000865071 981__ $$aI:(DE-Juel1)IMD-1-20101013
000865071 981__ $$aI:(DE-Juel1)IMD-2-20101013