001     865071
005     20240709094408.0
024 7 _ |a 10.1016/j.jeurceramsoc.2019.06.045
|2 doi
024 7 _ |a 0267-3762
|2 ISSN
024 7 _ |a 1878-2892
|2 ISSN
024 7 _ |a 2128/22735
|2 Handle
024 7 _ |a WOS:000487569500048
|2 WOS
037 _ _ |a FZJ-2019-04633
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Liu, Yang
|0 P:(DE-Juel1)168104
|b 0
245 _ _ |a Thermochemical stability of Fe- and Co-functionalized perovskite-type SrTiO3 oxygen transport membrane materials in syngas conditions
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568268893_2892
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The materials typically used for oxygen transport membranes, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) tend to decompose due to their low thermochemical stability under reducing atmosphere. Fe- and Co-doped SrTiO3 (SrTi1-x-yCoxFeyO3-δ, x + y ≤ 0.35) (STCF) materials showing an oxygen transport comparable to LSCF have great potential for application in ion-transport-devices. In this study, the thermochemical stability of pure perovskite-structured STCF was investigated after annealing in a syngas atmosphere at 600–900 °C. The phase composition of the materials after annealing was characterized by means of X-ray diffraction (XRD). The thermodynamic activities of SrO, FeO, and CoO in the STCF materials were evaluated using Knudsen effusion mass spectrometry (KEMS). Co-doped SrTiO3 (STC) materials were not stable after annealing in the syngas atmosphere above 5 mol% Co-substitution. Ruddlesden-Popper-like phases and SrCO3 were detected after annealing at 600 °C. In contrast, Fe substitution (STF) showed good stability after annealing in syngas upto 35 mol% substitution.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Motalov, Vladimir
|0 P:(DE-Juel1)176871
|b 1
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 2
|e Corresponding author
700 1 _ |a Sergeev, Dmitry
|0 P:(DE-Juel1)159377
|b 3
|u fzj
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 4
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 5
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2019.06.045
|g Vol. 39, no. 15, p. 4874 - 4881
|0 PERI:(DE-600)2013983-4
|n 15
|p 4874 - 4881
|t Journal of the European Ceramic Society
|v 39
|y 2019
|x 0955-2219
856 4 _ |y Published on 2019-06-25. Available in OpenAccess from 2021-06-25.
|u https://juser.fz-juelich.de/record/865071/files/2019%20Yang%20Thermochemical%20stability%20of%20STCF%20manuscript-oa.pdf
856 4 _ |y Published on 2019-06-25. Available in OpenAccess from 2021-06-25.
|x pdfa
|u https://juser.fz-juelich.de/record/865071/files/2019%20Yang%20Thermochemical%20stability%20of%20STCF%20manuscript-oa.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865071
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21