000865139 001__ 865139
000865139 005__ 20240619091252.0
000865139 0247_ $$2doi$$a10.1002/adfm.201902085
000865139 0247_ $$2ISSN$$a1057-9257
000865139 0247_ $$2ISSN$$a1099-0712
000865139 0247_ $$2ISSN$$a1616-301X
000865139 0247_ $$2ISSN$$a1616-3028
000865139 0247_ $$2WOS$$aWOS:000478629500020
000865139 037__ $$aFZJ-2019-04691
000865139 082__ $$a530
000865139 1001_ $$0P:(DE-Juel1)168271$$aLiang, Yuanying$$b0
000865139 245__ $$aTuning Channel Architecture of Interdigitated Organic Electrochemical Transistors for Recording the Action Potentials of Electrogenic Cells
000865139 260__ $$aWeinheim$$bWiley-VCH$$c2019
000865139 3367_ $$2DRIVER$$aarticle
000865139 3367_ $$2DataCite$$aOutput Types/Journal article
000865139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568640003_13616
000865139 3367_ $$2BibTeX$$aARTICLE
000865139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865139 3367_ $$00$$2EndNote$$aJournal Article
000865139 520__ $$aOrganic electrochemical transistors (OECTs) have emerged as versatile electrophysiological sensors due to their high transconductance, biocompatibility, and transparent channel material. High maximum transconductances are demonstrated facilitating the extracellular recording of signals from electrogenic cells. However, this requires large channel dimensions and thick polymer films. These large channel dimensions lead to low transistor densities. Here, interdigitated OECTs (iOECTs) are introduced, which feature high transconductances at small device areas. A superior device performance is achieved by systematically optimizing the electrode layout regarding channel length, number of electrode fingers and electrode width. Interestingly, the maximum transconductance (gmax) does not straightforwardly scale with the channel width‐to‐length ratio, which is different from planar OECTs. This deviation is caused by the dominating influence of the source–drain series resistance Rsd for short channel devices. Of note, there is a critical channel length (15 µm) above which the channel resistance Rch becomes dominant and the device characteristics converge toward those of planar OECTs. Design rules for engineering the performance of iOECTs are proposed and tested by recording action potentials of cardiomyocyte‐like HL‐1 cells with high signal‐to‐noise ratios. These results demonstrate that interdigitated OECTs meet two requirements of bioelectronic applications, namely, high device performance and small channel dimensions.
000865139 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000865139 588__ $$aDataset connected to CrossRef
000865139 7001_ $$0P:(DE-Juel1)161443$$aBrings, Fabian$$b1
000865139 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b2
000865139 7001_ $$0P:(DE-HGF)0$$aIngebrandt, Sven$$b3
000865139 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b4
000865139 7001_ $$0P:(DE-HGF)0$$aPich, Andrij$$b5
000865139 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6
000865139 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b7$$eCorresponding author
000865139 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201902085$$gVol. 29, no. 29, p. 1902085 -$$n29$$p1902085 -$$tAdvanced functional materials$$v29$$x1616-3028$$y2019
000865139 8564_ $$uhttps://juser.fz-juelich.de/record/865139/files/Liang_et_al-2019-Advanced_Functional_Materials-1.pdf$$yRestricted
000865139 8564_ $$uhttps://juser.fz-juelich.de/record/865139/files/Liang_et_al-2019-Advanced_Functional_Materials-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865139 909CO $$ooai:juser.fz-juelich.de:865139$$pVDB
000865139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168271$$aForschungszentrum Jülich$$b0$$kFZJ
000865139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b2$$kFZJ
000865139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b4$$kFZJ
000865139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
000865139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b7$$kFZJ
000865139 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000865139 9141_ $$y2019
000865139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2017
000865139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865139 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865139 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865139 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865139 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865139 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2017
000865139 920__ $$lyes
000865139 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000865139 980__ $$ajournal
000865139 980__ $$aVDB
000865139 980__ $$aI:(DE-Juel1)ICS-8-20110106
000865139 980__ $$aUNRESTRICTED
000865139 981__ $$aI:(DE-Juel1)IBI-3-20200312