Journal Article FZJ-2019-04691

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Tuning Channel Architecture of Interdigitated Organic Electrochemical Transistors for Recording the Action Potentials of Electrogenic Cells

 ;  ;  ;  ;  ;  ;  ;

2019
Wiley-VCH Weinheim

Advanced functional materials 29(29), 1902085 - () [10.1002/adfm.201902085]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Organic electrochemical transistors (OECTs) have emerged as versatile electrophysiological sensors due to their high transconductance, biocompatibility, and transparent channel material. High maximum transconductances are demonstrated facilitating the extracellular recording of signals from electrogenic cells. However, this requires large channel dimensions and thick polymer films. These large channel dimensions lead to low transistor densities. Here, interdigitated OECTs (iOECTs) are introduced, which feature high transconductances at small device areas. A superior device performance is achieved by systematically optimizing the electrode layout regarding channel length, number of electrode fingers and electrode width. Interestingly, the maximum transconductance (gmax) does not straightforwardly scale with the channel width‐to‐length ratio, which is different from planar OECTs. This deviation is caused by the dominating influence of the source–drain series resistance Rsd for short channel devices. Of note, there is a critical channel length (15 µm) above which the channel resistance Rch becomes dominant and the device characteristics converge toward those of planar OECTs. Design rules for engineering the performance of iOECTs are proposed and tested by recording action potentials of cardiomyocyte‐like HL‐1 cells with high signal‐to‐noise ratios. These results demonstrate that interdigitated OECTs meet two requirements of bioelectronic applications, namely, high device performance and small channel dimensions.

Classification:

Contributing Institute(s):
  1. Bioelektronik (ICS-8)
Research Program(s):
  1. 523 - Controlling Configuration-Based Phenomena (POF3-523) (POF3-523)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
ICS > ICS-8
Publications database

 Record created 2019-09-16, last modified 2024-06-19


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)