000865210 001__ 865210
000865210 005__ 20210130002944.0
000865210 0247_ $$2doi$$a10.1021/acs.jpcc.9b05865
000865210 0247_ $$2ISSN$$a1932-7447
000865210 0247_ $$2ISSN$$a1932-7455
000865210 0247_ $$2WOS$$aWOS:000484882500006
000865210 037__ $$aFZJ-2019-04744
000865210 082__ $$a530
000865210 1001_ $$0P:(DE-Juel1)168174$$aMennicken, Max$$b0
000865210 245__ $$aControlling the Electronic Contact at the Terpyridine/Metal Interface
000865210 260__ $$aWashington, DC$$bSoc.66306$$c2019
000865210 3367_ $$2DRIVER$$aarticle
000865210 3367_ $$2DataCite$$aOutput Types/Journal article
000865210 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568794258_18881
000865210 3367_ $$2BibTeX$$aARTICLE
000865210 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865210 3367_ $$00$$2EndNote$$aJournal Article
000865210 520__ $$aTerpyridine derivatives reveal rich coordination chemistry and are frequently used to construct reliable metallo-supramolecular wires, which are promising candidates for optoelectronic or nanoelectronic devices. Here, we examine especially the terpyridine/electrode interface, which is a critical point in these organic/inorganic hybrid architectures and of utmost importance with respect to the device performance. We use the approach to assemble nanodevices by immobilization of single terpyridine-functionalized gold nanoparticles with a diameter of 13 nm in between nanoelectrodes with a separation of about 10 nm. Conductance measurements on the formed double-barrier tunnel junctions reveal several discrete conductance values in the range of 10–9–10–7 S. They can be attributed to distinct terpyridine/electrode contact geometries by comparison with conductance values estimated based on the Landauer formula. We could clearly deduce that the respective terpyridine/metal contact determines the length of the tunneling path through the molecule and thus the measured device conductance. Furthermore, the formation of a distinct terpyridine/electrode contact geometry correlates with the chemical pretreatment of the terpyridine ligand shell of the gold nanoparticles with an alkaline solution. By applying infrared reflection absorption spectroscopy, we found that only a chemical treatment with a concentrated ammonia solution results in effective deprotonation of the terpyridine anchor group. This enables the electrical contact to the middle pyridyl ring and thus a short tunneling path through the molecule corresponding to a high conductance value. These findings indicate a way to control the contact geometry at the terpyridine/metal interface, which is a prerequisite for reliable nanodevices based on this class of molecules.
000865210 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000865210 588__ $$aDataset connected to CrossRef
000865210 7001_ $$0P:(DE-HGF)0$$aPeter, Sophia Katharina$$b1
000865210 7001_ $$00000-0003-1194-5192$$aKaulen, Corinna$$b2
000865210 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b3
000865210 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b4$$eCorresponding author
000865210 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.9b05865$$gVol. 123, no. 35, p. 21367 - 21375$$n35$$p21367 - 21375$$tThe journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces$$v123$$x1932-7455$$y2019
000865210 8564_ $$uhttps://juser.fz-juelich.de/record/865210/files/acs.jpcc.9b05865.pdf$$yRestricted
000865210 8564_ $$uhttps://juser.fz-juelich.de/record/865210/files/acs.jpcc.9b05865.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865210 909CO $$ooai:juser.fz-juelich.de:865210$$pVDB
000865210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168174$$aForschungszentrum Jülich$$b0$$kFZJ
000865210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich$$b4$$kFZJ
000865210 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000865210 9141_ $$y2019
000865210 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2017
000865210 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865210 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865210 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865210 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865210 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865210 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865210 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865210 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865210 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000865210 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000865210 980__ $$ajournal
000865210 980__ $$aVDB
000865210 980__ $$aI:(DE-Juel1)PGI-7-20110106
000865210 980__ $$aI:(DE-82)080009_20140620
000865210 980__ $$aUNRESTRICTED