Journal Article FZJ-2019-04744

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Controlling the Electronic Contact at the Terpyridine/Metal Interface

 ;  ;  ;  ;

2019
Soc.66306 Washington, DC

The journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces 123(35), 21367 - 21375 () [10.1021/acs.jpcc.9b05865]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Terpyridine derivatives reveal rich coordination chemistry and are frequently used to construct reliable metallo-supramolecular wires, which are promising candidates for optoelectronic or nanoelectronic devices. Here, we examine especially the terpyridine/electrode interface, which is a critical point in these organic/inorganic hybrid architectures and of utmost importance with respect to the device performance. We use the approach to assemble nanodevices by immobilization of single terpyridine-functionalized gold nanoparticles with a diameter of 13 nm in between nanoelectrodes with a separation of about 10 nm. Conductance measurements on the formed double-barrier tunnel junctions reveal several discrete conductance values in the range of 10–9–10–7 S. They can be attributed to distinct terpyridine/electrode contact geometries by comparison with conductance values estimated based on the Landauer formula. We could clearly deduce that the respective terpyridine/metal contact determines the length of the tunneling path through the molecule and thus the measured device conductance. Furthermore, the formation of a distinct terpyridine/electrode contact geometry correlates with the chemical pretreatment of the terpyridine ligand shell of the gold nanoparticles with an alkaline solution. By applying infrared reflection absorption spectroscopy, we found that only a chemical treatment with a concentrated ammonia solution results in effective deprotonation of the terpyridine anchor group. This enables the electrical contact to the middle pyridyl ring and thus a short tunneling path through the molecule corresponding to a high conductance value. These findings indicate a way to control the contact geometry at the terpyridine/metal interface, which is a prerequisite for reliable nanodevices based on this class of molecules.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 524 - Controlling Collective States (POF3-524) (POF3-524)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2019-09-18, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)