001     865210
005     20210130002944.0
024 7 _ |a 10.1021/acs.jpcc.9b05865
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a WOS:000484882500006
|2 WOS
037 _ _ |a FZJ-2019-04744
082 _ _ |a 530
100 1 _ |a Mennicken, Max
|0 P:(DE-Juel1)168174
|b 0
245 _ _ |a Controlling the Electronic Contact at the Terpyridine/Metal Interface
260 _ _ |a Washington, DC
|c 2019
|b Soc.66306
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568794258_18881
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Terpyridine derivatives reveal rich coordination chemistry and are frequently used to construct reliable metallo-supramolecular wires, which are promising candidates for optoelectronic or nanoelectronic devices. Here, we examine especially the terpyridine/electrode interface, which is a critical point in these organic/inorganic hybrid architectures and of utmost importance with respect to the device performance. We use the approach to assemble nanodevices by immobilization of single terpyridine-functionalized gold nanoparticles with a diameter of 13 nm in between nanoelectrodes with a separation of about 10 nm. Conductance measurements on the formed double-barrier tunnel junctions reveal several discrete conductance values in the range of 10–9–10–7 S. They can be attributed to distinct terpyridine/electrode contact geometries by comparison with conductance values estimated based on the Landauer formula. We could clearly deduce that the respective terpyridine/metal contact determines the length of the tunneling path through the molecule and thus the measured device conductance. Furthermore, the formation of a distinct terpyridine/electrode contact geometry correlates with the chemical pretreatment of the terpyridine ligand shell of the gold nanoparticles with an alkaline solution. By applying infrared reflection absorption spectroscopy, we found that only a chemical treatment with a concentrated ammonia solution results in effective deprotonation of the terpyridine anchor group. This enables the electrical contact to the middle pyridyl ring and thus a short tunneling path through the molecule corresponding to a high conductance value. These findings indicate a way to control the contact geometry at the terpyridine/metal interface, which is a prerequisite for reliable nanodevices based on this class of molecules.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Peter, Sophia Katharina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kaulen, Corinna
|0 0000-0003-1194-5192
|b 2
700 1 _ |a Simon, Ulrich
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Karthäuser, Silvia
|0 P:(DE-Juel1)130751
|b 4
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcc.9b05865
|g Vol. 123, no. 35, p. 21367 - 21375
|0 PERI:(DE-600)2256522-X
|n 35
|p 21367 - 21375
|t The journal of physical chemistry / C C, Nanomaterials and interfaces
|v 123
|y 2019
|x 1932-7455
856 4 _ |u https://juser.fz-juelich.de/record/865210/files/acs.jpcc.9b05865.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865210/files/acs.jpcc.9b05865.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:865210
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130751
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21