000865390 001__ 865390
000865390 005__ 20240313103124.0
000865390 0247_ $$2doi$$a10.3389/fninf.2019.00062
000865390 0247_ $$2Handle$$a2128/23055
000865390 0247_ $$2altmetric$$aaltmetric:67306941
000865390 0247_ $$2pmid$$apmid:31611781
000865390 0247_ $$2WOS$$aWOS:000488101100001
000865390 037__ $$aFZJ-2019-04875
000865390 082__ $$a610
000865390 1001_ $$0P:(DE-Juel1)161295$$aSprenger, Julia$$b0$$eCorresponding author$$ufzj
000865390 245__ $$aodMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments
000865390 260__ $$aLausanne$$bFrontiers Research Foundation$$c2019
000865390 3367_ $$2DRIVER$$aarticle
000865390 3367_ $$2DataCite$$aOutput Types/Journal article
000865390 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571294530_10840
000865390 3367_ $$2BibTeX$$aARTICLE
000865390 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865390 3367_ $$00$$2EndNote$$aJournal Article
000865390 520__ $$aAn essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format.
000865390 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000865390 536__ $$0G:(GEPRIS)322093511$$aDFG project 322093511 - Kognitive Leistung als Ergebnis koordinierter neuronaler Aktivität in unreifen präfrontal-hippokampalen Netzwerken (322093511)$$c322093511$$x1
000865390 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x2
000865390 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000865390 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x4
000865390 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x5
000865390 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x6
000865390 588__ $$aDataset connected to CrossRef
000865390 7001_ $$0P:(DE-Juel1)145394$$aZehl, Lyuba$$b1$$ufzj
000865390 7001_ $$0P:(DE-Juel1)179143$$aPick, Jana$$b2$$ufzj
000865390 7001_ $$0P:(DE-HGF)0$$aSonntag, Michael$$b3
000865390 7001_ $$0P:(DE-HGF)0$$aGrewe, Jan$$b4
000865390 7001_ $$0P:(DE-HGF)0$$aWachtler, Thomas$$b5
000865390 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b6$$ufzj
000865390 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b7$$ufzj
000865390 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2019.00062$$gVol. 13, p. 62$$p62$$tFrontiers in neuroinformatics$$v13$$x1662-5196$$y2019
000865390 8564_ $$uhttps://juser.fz-juelich.de/record/865390/files/2019-0181435-3.pdf
000865390 8564_ $$uhttps://juser.fz-juelich.de/record/865390/files/fninf-13-00062.pdf$$yOpenAccess
000865390 8564_ $$uhttps://juser.fz-juelich.de/record/865390/files/fninf-13-00062.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865390 8564_ $$uhttps://juser.fz-juelich.de/record/865390/files/2019-0181435-3.pdf?subformat=pdfa$$xpdfa
000865390 8767_ $$92019-10-16$$d2019-10-16$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507.50 USD
000865390 909CO $$ooai:juser.fz-juelich.de:865390$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000865390 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865390 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865390 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865390 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2017
000865390 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865390 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865390 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865390 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865390 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865390 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865390 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000865390 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865390 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865390 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865390 9141_ $$y2019
000865390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161295$$aForschungszentrum Jülich$$b0$$kFZJ
000865390 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161295$$aRWTH Aachen$$b0$$kRWTH
000865390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145394$$aForschungszentrum Jülich$$b1$$kFZJ
000865390 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)145394$$aRWTH Aachen$$b1$$kRWTH
000865390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179143$$aForschungszentrum Jülich$$b2$$kFZJ
000865390 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000865390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b6$$kFZJ
000865390 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b6$$kRWTH
000865390 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b7$$kFZJ
000865390 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144807$$aRWTH Aachen$$b7$$kRWTH
000865390 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000865390 920__ $$lno
000865390 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000865390 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000865390 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000865390 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x3
000865390 9801_ $$aAPC
000865390 9801_ $$aFullTexts
000865390 980__ $$ajournal
000865390 980__ $$aVDB
000865390 980__ $$aI:(DE-Juel1)INM-6-20090406
000865390 980__ $$aI:(DE-Juel1)IAS-6-20130828
000865390 980__ $$aI:(DE-Juel1)INM-10-20170113
000865390 980__ $$aI:(DE-Juel1)INM-1-20090406
000865390 980__ $$aAPC
000865390 980__ $$aUNRESTRICTED
000865390 980__ $$aOPENSCIENCE
000865390 981__ $$aI:(DE-Juel1)IAS-6-20130828