001     865390
005     20240313103124.0
024 7 _ |2 doi
|a 10.3389/fninf.2019.00062
024 7 _ |2 Handle
|a 2128/23055
024 7 _ |2 altmetric
|a altmetric:67306941
024 7 _ |2 pmid
|a pmid:31611781
024 7 _ |2 WOS
|a WOS:000488101100001
037 _ _ |a FZJ-2019-04875
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)161295
|a Sprenger, Julia
|b 0
|e Corresponding author
|u fzj
245 _ _ |a odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments
260 _ _ |a Lausanne
|b Frontiers Research Foundation
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1571294530_10840
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a An essential aspect of scientific reproducibility is a coherent and complete acquisition of metadata along with the actual data of an experiment. The high degree of complexity and heterogeneity of neuroscience experiments requires a rigorous management of the associated metadata. The odML framework represents a solution to organize and store complex metadata digitally in a hierarchical format that is both human and machine readable. However, this hierarchical representation of metadata is difficult to handle when metadata entries need to be collected and edited manually during the daily routines of a laboratory. With odMLtables, we present an open-source software solution that enables users to collect, manipulate, visualize, and store metadata in tabular representations (in xls or csv format) by providing functionality to convert these tabular collections to the hierarchically structured metadata format odML, and to either extract or merge subsets of a complex metadata collection. With this, odMLtables bridges the gap between handling metadata in an intuitive way that integrates well with daily lab routines and commonly used software products on the one hand, and the implementation of a complete, well-defined metadata collection for the experiment in a standardized format on the other hand. We demonstrate usage scenarios of the odMLtables tools in common lab routines in the context of metadata acquisition and management, and show how the tool can assist in exploring published datasets that provide metadata in the odML format.
536 _ _ |0 G:(DE-HGF)POF3-571
|a 571 - Connectivity and Activity (POF3-571)
|c POF3-571
|f POF III
|x 0
536 _ _ |0 G:(GEPRIS)322093511
|a DFG project 322093511 - Kognitive Leistung als Ergebnis koordinierter neuronaler Aktivität in unreifen präfrontal-hippokampalen Netzwerken (322093511)
|c 322093511
|x 1
536 _ _ |0 G:(GEPRIS)238707842
|a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|c 238707842
|x 2
536 _ _ |0 G:(DE-Juel1)HGF-SMHB-2013-2017
|a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|c HGF-SMHB-2013-2017
|f SMHB
|x 3
536 _ _ |0 G:(EU-Grant)720270
|a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|c 720270
|f H2020-Adhoc-2014-20
|x 4
536 _ _ |0 G:(EU-Grant)785907
|a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 5
536 _ _ |0 G:(DE-Juel1)HDS-LEE-20190612
|a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|c HDS-LEE-20190612
|x 6
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)145394
|a Zehl, Lyuba
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)179143
|a Pick, Jana
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Sonntag, Michael
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Grewe, Jan
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Wachtler, Thomas
|b 5
700 1 _ |0 P:(DE-Juel1)144168
|a Grün, Sonja
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)144807
|a Denker, Michael
|b 7
|u fzj
773 _ _ |0 PERI:(DE-600)2452979-5
|a 10.3389/fninf.2019.00062
|g Vol. 13, p. 62
|p 62
|t Frontiers in neuroinformatics
|v 13
|x 1662-5196
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/865390/files/2019-0181435-3.pdf
856 4 _ |u https://juser.fz-juelich.de/record/865390/files/fninf-13-00062.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865390/files/fninf-13-00062.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865390/files/2019-0181435-3.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:865390
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161295
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)161295
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145394
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)145394
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179143
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a External Institute
|b 5
|k Extern
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144168
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)144168
|a RWTH Aachen
|b 6
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144807
|a Forschungszentrum Jülich
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)144807
|a RWTH Aachen
|b 7
|k RWTH
913 1 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b FRONT NEUROINFORM : 2017
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 3
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 _ _ |a OPENSCIENCE
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21