000865539 001__ 865539
000865539 005__ 20240712101028.0
000865539 0247_ $$2doi$$a10.5194/acp-19-11635-2019
000865539 0247_ $$2ISSN$$a1680-7316
000865539 0247_ $$2ISSN$$a1680-7324
000865539 0247_ $$2Handle$$a2128/27301
000865539 0247_ $$2altmetric$$aaltmetric:66728213
000865539 0247_ $$2WOS$$aWOS:000486704600001
000865539 037__ $$aFZJ-2019-04919
000865539 082__ $$a550
000865539 1001_ $$0P:(DE-Juel1)166277$$aRolletter, Michael$$b0$$ufzj
000865539 245__ $$aInvestigation of the α -pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR
000865539 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000865539 3367_ $$2DRIVER$$aarticle
000865539 3367_ $$2DataCite$$aOutput Types/Journal article
000865539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615192563_2885
000865539 3367_ $$2BibTeX$$aARTICLE
000865539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865539 3367_ $$00$$2EndNote$$aJournal Article
000865539 520__ $$aThe photooxidation of the most abundant monoterpene, α-pinene, by the hydroxyl radical (OH) was investigated at atmospheric concentrations in the atmospheric simulation chamber SAPHIR. Concentrations of nitric oxide (NO) were below 120 pptv. Yields of organic oxidation products are determined from measured time series giving values of 0.11±0.05, 0.19±0.06, and 0.05±0.03 for formaldehyde, acetone, and pinonaldehyde, respectively. The pinonaldehyde yield is at the low side of yields measured in previous laboratory studies, ranging from 0.06 to 0.87. These studies were mostly performed at reactant concentrations much higher than observed in the atmosphere. Time series of measured radical and trace-gas concentrations are compared to results from model calculations applying the Master Chemical Mechanism (MCM) 3.3.1. The model predicts pinonaldehyde mixing ratios that are at least a factor of 4 higher than measured values. At the same time, modeled hydroxyl and hydroperoxy (HO2) radical concentrations are approximately 25 % lower than measured values. Vereecken et al. (2007) suggested a shift of the initial organic peroxy radical (RO2) distribution towards RO2 species that do not yield pinonaldehyde but produce other organic products. Implementing these modifications reduces the model–measurement gap of pinonaldehyde by 20 % and also improves the agreement in modeled and measured radical concentrations by 10 %. However, the chemical oxidation mechanism needs further adjustment to explain observed radical and pinonaldehyde concentrations. This could be achieved by adjusting the initial RO2 distribution, but could also be done by implementing alternative reaction channels of RO2 species that currently lead to the formation of pinonaldehyde in the model.
000865539 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000865539 588__ $$aDataset connected to CrossRef
000865539 7001_ $$0P:(DE-Juel1)3039$$aKaminski, Martin$$b1
000865539 7001_ $$0P:(DE-Juel1)136889$$aAcir, Ismail-Hakki$$b2
000865539 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b3
000865539 7001_ $$0P:(DE-Juel1)16317$$aDorn, Hans-Peter$$b4
000865539 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b5$$ufzj
000865539 7001_ $$0P:(DE-HGF)0$$aLutz, Anna$$b6
000865539 7001_ $$0P:(DE-Juel1)7894$$aNehr, Sascha$$b7
000865539 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b8$$ufzj
000865539 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b9$$ufzj
000865539 7001_ $$0P:(DE-Juel1)2367$$aWegener, Robert$$b10$$ufzj
000865539 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b11
000865539 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b12
000865539 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b13
000865539 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b14$$eCorresponding author
000865539 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-11635-2019$$gVol. 19, no. 18, p. 11635 - 11649$$n18$$p11635 - 11649$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000865539 8564_ $$uhttps://juser.fz-juelich.de/record/865539/files/invoice_Helmholtz-PUC-2019-62.pdf
000865539 8564_ $$uhttps://juser.fz-juelich.de/record/865539/files/acp-19-11635-2019a.pdf$$yOpenAccess
000865539 8564_ $$uhttps://juser.fz-juelich.de/record/865539/files/invoice_Helmholtz-PUC-2019-62.pdf?subformat=pdfa$$xpdfa
000865539 8564_ $$uhttps://juser.fz-juelich.de/record/865539/files/acp-19-11635-2019a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865539 8767_ $$8Helmholtz-PUC-2019-62$$92019-10-01$$d2019-10-07$$eAPC$$jZahlung erfolgt$$pacp-2019-492
000865539 909CO $$ooai:juser.fz-juelich.de:865539$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166277$$aForschungszentrum Jülich$$b0$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b3$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich$$b4$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich$$b5$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b8$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b9$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich$$b10$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b11$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b12$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b13$$kFZJ
000865539 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b14$$kFZJ
000865539 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000865539 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000865539 9141_ $$y2019
000865539 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865539 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865539 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865539 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000865539 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865539 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865539 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865539 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865539 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865539 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865539 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000865539 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000865539 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865539 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865539 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865539 920__ $$lyes
000865539 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000865539 9801_ $$aAPC
000865539 9801_ $$aFullTexts
000865539 980__ $$ajournal
000865539 980__ $$aVDB
000865539 980__ $$aUNRESTRICTED
000865539 980__ $$aI:(DE-Juel1)IEK-8-20101013
000865539 980__ $$aAPC
000865539 981__ $$aI:(DE-Juel1)ICE-3-20101013