000865633 001__ 865633
000865633 005__ 20240712112901.0
000865633 0247_ $$2doi$$a10.1002/aic.16788
000865633 0247_ $$2ISSN$$a0001-1541
000865633 0247_ $$2ISSN$$a1547-5905
000865633 0247_ $$2Handle$$a2128/23750
000865633 0247_ $$2WOS$$aWOS:000488268000001
000865633 037__ $$aFZJ-2019-04984
000865633 082__ $$a660
000865633 1001_ $$0P:(DE-HGF)0$$aWalz, Olga$$b0
000865633 245__ $$aOptimal experimental design for optimal process design: A trilevel optimization formulation
000865633 260__ $$aHoboken, NJ$$bWiley$$c2020
000865633 3367_ $$2DRIVER$$aarticle
000865633 3367_ $$2DataCite$$aOutput Types/Journal article
000865633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576839024_15041
000865633 3367_ $$2BibTeX$$aARTICLE
000865633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865633 3367_ $$00$$2EndNote$$aJournal Article
000865633 520__ $$aTypical optimal experimental design (OED) methods aim at minimizing the covariance matrix of the estimated parameters regardless of the intended application of the model that is being estimated. This can unnecessarily increase the experimental costs. Herein, we propose a new OED method, which tailors the designed experiments to the model application. The method is demonstrated for model‐based process design and aims at mitigating a worst‐case realization of the process design. The proposed formulation results in a min–max–min problem and is based on bounded‐error OED. The method is illustrated via an ad hoc solution method using two examples, a simple illustrative example and the van de Vusse reaction, that show the differences between typical and the new tailored OED method: experimental designs can be considered good using the latter method, while the same design would be considered bad with the former methods.
000865633 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000865633 588__ $$aDataset connected to CrossRef
000865633 7001_ $$0P:(DE-HGF)0$$aDjelassi, Hatim$$b1
000865633 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b2$$eCorresponding author
000865633 773__ $$0PERI:(DE-600)2020333-0$$a10.1002/aic.16788$$n1$$pe16788$$tAIChE journal$$v66$$x0001-1541$$y2020
000865633 8564_ $$uhttps://juser.fz-juelich.de/record/865633/files/Walz_et_al-2019-AIChE_Journal.pdf$$yOpenAccess
000865633 8564_ $$uhttps://juser.fz-juelich.de/record/865633/files/Walz_et_al-2019-AIChE_Journal.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865633 8767_ $$92019-09-07$$d2019-10-10$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pAIChE-19-21497.R2
000865633 909CO $$ooai:juser.fz-juelich.de:865633$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000865633 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000865633 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000865633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b2$$kFZJ
000865633 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b2$$kRWTH
000865633 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000865633 9141_ $$y2019
000865633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865633 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865633 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000865633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAICHE J : 2017
000865633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865633 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865633 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865633 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865633 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865633 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865633 920__ $$lyes
000865633 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000865633 9801_ $$aAPC
000865633 9801_ $$aFullTexts
000865633 980__ $$ajournal
000865633 980__ $$aVDB
000865633 980__ $$aUNRESTRICTED
000865633 980__ $$aI:(DE-Juel1)IEK-10-20170217
000865633 980__ $$aAPC
000865633 981__ $$aI:(DE-Juel1)ICE-1-20170217