000865751 001__ 865751
000865751 005__ 20240712113250.0
000865751 0247_ $$2doi$$a10.1016/j.ijhydene.2020.05.060
000865751 0247_ $$2ISSN$$a0360-3199
000865751 0247_ $$2ISSN$$a1879-3487
000865751 0247_ $$2Handle$$a2128/27276
000865751 0247_ $$2WOS$$aWOS:000552053500085
000865751 037__ $$aFZJ-2019-05067
000865751 082__ $$a620
000865751 1001_ $$0P:(DE-Juel1)168221$$aZhang, Shidong$$b0$$eCorresponding author$$ufzj
000865751 245__ $$aPolymer electrolyte fuel Cell Modeling - Comparison of Two Models with Different Levels of Complexity
000865751 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000865751 3367_ $$2DRIVER$$aarticle
000865751 3367_ $$2DataCite$$aOutput Types/Journal article
000865751 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614612390_8401
000865751 3367_ $$2BibTeX$$aARTICLE
000865751 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865751 3367_ $$00$$2EndNote$$aJournal Article
000865751 520__ $$aThe modeling of fuel cells requires the coupling of fluid transport with electro-chemical reactions. There are two approaches commonly used. Firstly, the electrodes can be treated as two planes, where the potential gradient can be considered as being locally one-dimensional. In this case a two dimensional current density distribution is obtained. Secondly, the two electrode layers can be spatially resolved and the protonic and electronic potentials obtained by solving a pair of coupled Poisson equations. The latter approach requires much higher computational resources, because a higher spatial resolution is required and a large set of model parameters is required. On the other hand, much more detailed local information can be obtained by this method. The motivation for this study was to compare the results quantitively with detailed experimental data for a high temperature polymer electrolyte fuel cell with a geometric area of 200 cm2. Both model approaches show very good agreement with measured local current density distributions. The second model is able to provide a deeper insight into the current density variation through the membrane and catalyst layers and reveals points with local extremes. The present results are specific for high temperature polymer electrolyte fuel cells but the conclusions may readily be applied to the modeling of other high temperature fuel cell types.
000865751 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000865751 588__ $$aDataset connected to CrossRef
000865751 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven$$b1$$ufzj
000865751 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b2$$ufzj
000865751 7001_ $$0P:(DE-Juel1)168242$$aAndersson, Martin$$b3$$ufzj
000865751 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b4$$ufzj
000865751 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2020.05.060$$gVol. 45, no. 38, p. 19761 - 19777$$n38$$p19761 - 19777$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020
000865751 8564_ $$uhttps://juser.fz-juelich.de/record/865751/files/Zhang_Shidong.pdf$$yOpenAccess
000865751 909CO $$ooai:juser.fz-juelich.de:865751$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168221$$aForschungszentrum Jülich$$b0$$kFZJ
000865751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b1$$kFZJ
000865751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b2$$kFZJ
000865751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168242$$aForschungszentrum Jülich$$b3$$kFZJ
000865751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b4$$kFZJ
000865751 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b4$$kRWTH
000865751 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000865751 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000865751 9141_ $$y2021
000865751 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865751 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000865751 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000865751 920__ $$lyes
000865751 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000865751 9801_ $$aFullTexts
000865751 980__ $$ajournal
000865751 980__ $$aVDB
000865751 980__ $$aUNRESTRICTED
000865751 980__ $$aI:(DE-Juel1)IEK-14-20191129
000865751 981__ $$aI:(DE-Juel1)IET-4-20191129